@inproceedings{roberts-hickl-2008-scaling,
title = "Scaling Answer Type Detection to Large Hierarchies",
author = "Roberts, Kirk and
Hickl, Andrew",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}`08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L08-1137/",
abstract = "This paper describes the creation of a state-of-the-art answer type detection system capable of recognizing more than 200 different expected answer types with greater than 85{\%} precision and recall. After describing how we constructed a new, multi-tiered answer type hierarchy from the set of entity types recognized by Language Computer Corporations CICEROLITE named entity recognition system, we describe how we used this hierarchy to annotate a new corpus of more than 10,000 English factoid questions. We show how an answer type detection system trained on this corpus can be used to enhance the accuracy of a state-of-the-art question-answering system (Hickl et al., 2007; Hickl et al., 2006b) by more than 7{\%} overall."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="roberts-hickl-2008-scaling">
<titleInfo>
<title>Scaling Answer Type Detection to Large Hierarchies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Hickl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the creation of a state-of-the-art answer type detection system capable of recognizing more than 200 different expected answer types with greater than 85% precision and recall. After describing how we constructed a new, multi-tiered answer type hierarchy from the set of entity types recognized by Language Computer Corporations CICEROLITE named entity recognition system, we describe how we used this hierarchy to annotate a new corpus of more than 10,000 English factoid questions. We show how an answer type detection system trained on this corpus can be used to enhance the accuracy of a state-of-the-art question-answering system (Hickl et al., 2007; Hickl et al., 2006b) by more than 7% overall.</abstract>
<identifier type="citekey">roberts-hickl-2008-scaling</identifier>
<location>
<url>https://aclanthology.org/L08-1137/</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Scaling Answer Type Detection to Large Hierarchies
%A Roberts, Kirk
%A Hickl, Andrew
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F roberts-hickl-2008-scaling
%X This paper describes the creation of a state-of-the-art answer type detection system capable of recognizing more than 200 different expected answer types with greater than 85% precision and recall. After describing how we constructed a new, multi-tiered answer type hierarchy from the set of entity types recognized by Language Computer Corporations CICEROLITE named entity recognition system, we describe how we used this hierarchy to annotate a new corpus of more than 10,000 English factoid questions. We show how an answer type detection system trained on this corpus can be used to enhance the accuracy of a state-of-the-art question-answering system (Hickl et al., 2007; Hickl et al., 2006b) by more than 7% overall.
%U https://aclanthology.org/L08-1137/
Markdown (Informal)
[Scaling Answer Type Detection to Large Hierarchies](https://aclanthology.org/L08-1137/) (Roberts & Hickl, LREC 2008)
ACL
- Kirk Roberts and Andrew Hickl. 2008. Scaling Answer Type Detection to Large Hierarchies. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08), Marrakech, Morocco. European Language Resources Association (ELRA).