@inproceedings{orasan-chiorean-2008-evaluation,
title = "Evaluation of a Cross-lingual {R}omanian-{E}nglish Multi-document Summariser",
author = "Or{\u{a}}san, Constantin and
Chiorean, Oana Andreea",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}'08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf",
abstract = "The rapid growth of the Internet means that more information is available than ever before. Multilingual multi-document summarisation offers a way to access this information even when it is not in a language spoken by the reader by extracting the gist from related documents and translating it automatically. This paper presents an experiment in which Maximal Marginal Relevance (MMR), a well known multi-document summarisation method, is used to produce summaries from Romanian news articles. A task-based evaluation performed on both the original summaries and on their automatically translated versions reveals that they still contain a significant portion of the important information from the original texts. However, direct evaluation of the automatically translated summaries shows that they are not very legible and this can put off some readers who want to find out more about a topic.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="orasan-chiorean-2008-evaluation">
<titleInfo>
<title>Evaluation of a Cross-lingual Romanian-English Multi-document Summariser</title>
</titleInfo>
<name type="personal">
<namePart type="given">Constantin</namePart>
<namePart type="family">Orăsan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="given">Andreea</namePart>
<namePart type="family">Chiorean</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The rapid growth of the Internet means that more information is available than ever before. Multilingual multi-document summarisation offers a way to access this information even when it is not in a language spoken by the reader by extracting the gist from related documents and translating it automatically. This paper presents an experiment in which Maximal Marginal Relevance (MMR), a well known multi-document summarisation method, is used to produce summaries from Romanian news articles. A task-based evaluation performed on both the original summaries and on their automatically translated versions reveals that they still contain a significant portion of the important information from the original texts. However, direct evaluation of the automatically translated summaries shows that they are not very legible and this can put off some readers who want to find out more about a topic.</abstract>
<identifier type="citekey">orasan-chiorean-2008-evaluation</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluation of a Cross-lingual Romanian-English Multi-document Summariser
%A Orăsan, Constantin
%A Chiorean, Oana Andreea
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F orasan-chiorean-2008-evaluation
%X The rapid growth of the Internet means that more information is available than ever before. Multilingual multi-document summarisation offers a way to access this information even when it is not in a language spoken by the reader by extracting the gist from related documents and translating it automatically. This paper presents an experiment in which Maximal Marginal Relevance (MMR), a well known multi-document summarisation method, is used to produce summaries from Romanian news articles. A task-based evaluation performed on both the original summaries and on their automatically translated versions reveals that they still contain a significant portion of the important information from the original texts. However, direct evaluation of the automatically translated summaries shows that they are not very legible and this can put off some readers who want to find out more about a topic.
%U http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf
Markdown (Informal)
[Evaluation of a Cross-lingual Romanian-English Multi-document Summariser](http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf) (Orăsan & Chiorean, LREC 2008)
ACL