@inproceedings{potrich-pianta-2008-l,
title = "{L}-{ISA}: Learning Domain Specific Isa-Relations from the Web",
author = "Potrich, Alessandra and
Pianta, Emanuele",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}'08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2008/pdf/595_paper.pdf",
abstract = "Automated extraction of ontological knowledge from text corpora is a relevant task in Natural Language Processing. In this paper, we focus on the problem of finding hypernyms for relevant concepts in a specific domain (e.g. Optical Recording) in the context of a concrete and challenging application scenario (patent processing). To this end information available on the Web is exploited. The extraction method includes four mains steps. Firstly, the Google search engine is exploited to retrieve possible instances of isa-patterns reported in the literature. Then, the returned snippets are filtered on the basis of lexico-syntactic criteria (e.g. the candidate hypernym must be expressed as a noun phrase without complex modifiers). In a further filtering step, only candidate hypernyms compatible with the target domain are kept. Finally a candidate ranking mechanism is applied to select one hypernym as output of the algorithm. The extraction method was evaluated on 100 concepts of the Optical Recording domain. Moreover, the reliability of isa-patterns reported in the literature as predictors of isa-relations was assessed by manually evaluating the template instances remaining after lexico-syntactic filtering, for 3 concepts of the same domain. While more extensive testing is needed the method appears promising especially for its portability across different domains.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="potrich-pianta-2008-l">
<titleInfo>
<title>L-ISA: Learning Domain Specific Isa-Relations from the Web</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alessandra</namePart>
<namePart type="family">Potrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emanuele</namePart>
<namePart type="family">Pianta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automated extraction of ontological knowledge from text corpora is a relevant task in Natural Language Processing. In this paper, we focus on the problem of finding hypernyms for relevant concepts in a specific domain (e.g. Optical Recording) in the context of a concrete and challenging application scenario (patent processing). To this end information available on the Web is exploited. The extraction method includes four mains steps. Firstly, the Google search engine is exploited to retrieve possible instances of isa-patterns reported in the literature. Then, the returned snippets are filtered on the basis of lexico-syntactic criteria (e.g. the candidate hypernym must be expressed as a noun phrase without complex modifiers). In a further filtering step, only candidate hypernyms compatible with the target domain are kept. Finally a candidate ranking mechanism is applied to select one hypernym as output of the algorithm. The extraction method was evaluated on 100 concepts of the Optical Recording domain. Moreover, the reliability of isa-patterns reported in the literature as predictors of isa-relations was assessed by manually evaluating the template instances remaining after lexico-syntactic filtering, for 3 concepts of the same domain. While more extensive testing is needed the method appears promising especially for its portability across different domains.</abstract>
<identifier type="citekey">potrich-pianta-2008-l</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2008/pdf/595_paper.pdf</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T L-ISA: Learning Domain Specific Isa-Relations from the Web
%A Potrich, Alessandra
%A Pianta, Emanuele
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F potrich-pianta-2008-l
%X Automated extraction of ontological knowledge from text corpora is a relevant task in Natural Language Processing. In this paper, we focus on the problem of finding hypernyms for relevant concepts in a specific domain (e.g. Optical Recording) in the context of a concrete and challenging application scenario (patent processing). To this end information available on the Web is exploited. The extraction method includes four mains steps. Firstly, the Google search engine is exploited to retrieve possible instances of isa-patterns reported in the literature. Then, the returned snippets are filtered on the basis of lexico-syntactic criteria (e.g. the candidate hypernym must be expressed as a noun phrase without complex modifiers). In a further filtering step, only candidate hypernyms compatible with the target domain are kept. Finally a candidate ranking mechanism is applied to select one hypernym as output of the algorithm. The extraction method was evaluated on 100 concepts of the Optical Recording domain. Moreover, the reliability of isa-patterns reported in the literature as predictors of isa-relations was assessed by manually evaluating the template instances remaining after lexico-syntactic filtering, for 3 concepts of the same domain. While more extensive testing is needed the method appears promising especially for its portability across different domains.
%U http://www.lrec-conf.org/proceedings/lrec2008/pdf/595_paper.pdf
Markdown (Informal)
[L-ISA: Learning Domain Specific Isa-Relations from the Web](http://www.lrec-conf.org/proceedings/lrec2008/pdf/595_paper.pdf) (Potrich & Pianta, LREC 2008)
ACL