@inproceedings{ibekwe-sanjuan-etal-2008-identifying,
title = "Identifying Strategic Information from Scientific Articles through Sentence Classification",
author = "Ibekwe-SanJuan, Fidelia and
Chen, Chaomei and
Pinho, Roberto",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}'08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2008/pdf/386_paper.pdf",
abstract = "We address here the need to assist users in rapidly accessing the most important or strategic information in the text corpus by identifying sentences carrying specific information. More precisely, we want to identify contribution of authors of scientific papers through a categorization of sentences using rhetorical and lexical cues. We built local grammars to annotate sentences in the corpus according to their rhetorical status: objective, new things, results, findings, hypotheses, conclusion, related{\_}word, future work. The annotation is automatically projected automatically onto two other corpora to test their portability across several domains. The local grammars are implemented in the Unitex system. After sentence categorization, the annotated sentences are clustered and users can navigate the result by accessing specific information types. The results can be used for advanced information retrieval purposes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ibekwe-sanjuan-etal-2008-identifying">
<titleInfo>
<title>Identifying Strategic Information from Scientific Articles through Sentence Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fidelia</namePart>
<namePart type="family">Ibekwe-SanJuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chaomei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Pinho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We address here the need to assist users in rapidly accessing the most important or strategic information in the text corpus by identifying sentences carrying specific information. More precisely, we want to identify contribution of authors of scientific papers through a categorization of sentences using rhetorical and lexical cues. We built local grammars to annotate sentences in the corpus according to their rhetorical status: objective, new things, results, findings, hypotheses, conclusion, related_word, future work. The annotation is automatically projected automatically onto two other corpora to test their portability across several domains. The local grammars are implemented in the Unitex system. After sentence categorization, the annotated sentences are clustered and users can navigate the result by accessing specific information types. The results can be used for advanced information retrieval purposes.</abstract>
<identifier type="citekey">ibekwe-sanjuan-etal-2008-identifying</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2008/pdf/386_paper.pdf</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Strategic Information from Scientific Articles through Sentence Classification
%A Ibekwe-SanJuan, Fidelia
%A Chen, Chaomei
%A Pinho, Roberto
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F ibekwe-sanjuan-etal-2008-identifying
%X We address here the need to assist users in rapidly accessing the most important or strategic information in the text corpus by identifying sentences carrying specific information. More precisely, we want to identify contribution of authors of scientific papers through a categorization of sentences using rhetorical and lexical cues. We built local grammars to annotate sentences in the corpus according to their rhetorical status: objective, new things, results, findings, hypotheses, conclusion, related_word, future work. The annotation is automatically projected automatically onto two other corpora to test their portability across several domains. The local grammars are implemented in the Unitex system. After sentence categorization, the annotated sentences are clustered and users can navigate the result by accessing specific information types. The results can be used for advanced information retrieval purposes.
%U http://www.lrec-conf.org/proceedings/lrec2008/pdf/386_paper.pdf
Markdown (Informal)
[Identifying Strategic Information from Scientific Articles through Sentence Classification](http://www.lrec-conf.org/proceedings/lrec2008/pdf/386_paper.pdf) (Ibekwe-SanJuan et al., LREC 2008)
ACL