@inproceedings{mieskes-strube-2008-parameters,
title = "Parameters for Topic Boundary Detection in Multi-Party Dialogues",
author = "Mieskes, Margot and
Strube, Michael",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}`08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L08-1310/",
abstract = "We present a topic boundary detection method that searches for connections between sequences of utterances in multi party dialogues. The connections are established based on word identity. We compare our method to a state-of-the art automatic Topic boundary detection method that was also used on multi party dialogues. We checked various methods of preprocessing of the data, including stemming, lemmatization and stopword filtering with a text-based as well as speech-based stopword lists. Using standard evaluation methods we found that our method outperformed the state-of-the art method."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mieskes-strube-2008-parameters">
<titleInfo>
<title>Parameters for Topic Boundary Detection in Multi-Party Dialogues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Margot</namePart>
<namePart type="family">Mieskes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Strube</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a topic boundary detection method that searches for connections between sequences of utterances in multi party dialogues. The connections are established based on word identity. We compare our method to a state-of-the art automatic Topic boundary detection method that was also used on multi party dialogues. We checked various methods of preprocessing of the data, including stemming, lemmatization and stopword filtering with a text-based as well as speech-based stopword lists. Using standard evaluation methods we found that our method outperformed the state-of-the art method.</abstract>
<identifier type="citekey">mieskes-strube-2008-parameters</identifier>
<location>
<url>https://aclanthology.org/L08-1310/</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Parameters for Topic Boundary Detection in Multi-Party Dialogues
%A Mieskes, Margot
%A Strube, Michael
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F mieskes-strube-2008-parameters
%X We present a topic boundary detection method that searches for connections between sequences of utterances in multi party dialogues. The connections are established based on word identity. We compare our method to a state-of-the art automatic Topic boundary detection method that was also used on multi party dialogues. We checked various methods of preprocessing of the data, including stemming, lemmatization and stopword filtering with a text-based as well as speech-based stopword lists. Using standard evaluation methods we found that our method outperformed the state-of-the art method.
%U https://aclanthology.org/L08-1310/
Markdown (Informal)
[Parameters for Topic Boundary Detection in Multi-Party Dialogues](https://aclanthology.org/L08-1310/) (Mieskes & Strube, LREC 2008)
ACL