@inproceedings{bieler-dipper-2008-measures,
title = "Measures for Term and Sentence Relevances: an Evaluation for {G}erman",
author = "Bieler, Heike and
Dipper, Stefanie",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}`08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L08-1353/",
abstract = "Terms, term relevances, and sentence relevances are concepts that figure in many NLP applications, such as Text Summarization. These concepts are implemented in various ways, though. In this paper, we want to shed light on the impact that different implementations can have on the overall performance of the systems. In particular, we examine the interplay between term definitions and sentence-scoring functions. For this, we define a gold standard that ranks sentences according to their significance and evaluate a range of relevant parameters with respect to the gold standard."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bieler-dipper-2008-measures">
<titleInfo>
<title>Measures for Term and Sentence Relevances: an Evaluation for German</title>
</titleInfo>
<name type="personal">
<namePart type="given">Heike</namePart>
<namePart type="family">Bieler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefanie</namePart>
<namePart type="family">Dipper</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Terms, term relevances, and sentence relevances are concepts that figure in many NLP applications, such as Text Summarization. These concepts are implemented in various ways, though. In this paper, we want to shed light on the impact that different implementations can have on the overall performance of the systems. In particular, we examine the interplay between term definitions and sentence-scoring functions. For this, we define a gold standard that ranks sentences according to their significance and evaluate a range of relevant parameters with respect to the gold standard.</abstract>
<identifier type="citekey">bieler-dipper-2008-measures</identifier>
<location>
<url>https://aclanthology.org/L08-1353/</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Measures for Term and Sentence Relevances: an Evaluation for German
%A Bieler, Heike
%A Dipper, Stefanie
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F bieler-dipper-2008-measures
%X Terms, term relevances, and sentence relevances are concepts that figure in many NLP applications, such as Text Summarization. These concepts are implemented in various ways, though. In this paper, we want to shed light on the impact that different implementations can have on the overall performance of the systems. In particular, we examine the interplay between term definitions and sentence-scoring functions. For this, we define a gold standard that ranks sentences according to their significance and evaluate a range of relevant parameters with respect to the gold standard.
%U https://aclanthology.org/L08-1353/
Markdown (Informal)
[Measures for Term and Sentence Relevances: an Evaluation for German](https://aclanthology.org/L08-1353/) (Bieler & Dipper, LREC 2008)
ACL