@inproceedings{nishiura-etal-2008-evaluation,
title = "Evaluation Framework for Distant-talking Speech Recognition under Reverberant Environments: newest Part of the {CENSREC} Series -",
author = "Nishiura, Takanobu and
Nakayama, Masato and
Denda, Yuki and
Kitaoka, Norihide and
Yamamoto, Kazumasa and
Yamada, Takeshi and
Tsuge, Satoru and
Miyajima, Chiyomi and
Fujimoto, Masakiyo and
Takiguchi, Tetsuya and
Tamura, Satoshi and
Kuroiwa, Shingo and
Takeda, Kazuya and
Nakamura, Satoshi",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}'08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2008/pdf/468_paper.pdf",
abstract = "Recently, speech recognition performance has been drastically improved by statistical methods and huge speech databases. Now performance improvement under such realistic environments as noisy conditions is being focused on. Since October 2001, we from the working group of the Information Processing Society in Japan have been working on evaluation methodologies and frameworks for Japanese noisy speech recognition. We have released frameworks including databases and evaluation tools called CENSREC-1 (Corpus and Environment for Noisy Speech RECognition 1; formerly AURORA-2J), CENSREC-2 (in-car connected digits recognition), CENSREC-3 (in-car isolated word recognition), and CENSREC-1-C (voice activity detection under noisy conditions). In this paper, we newly introduce a collection of databases and evaluation tools named CENSREC-4, which is an evaluation framework for distant-talking speech under hands-free conditions. Distant-talking speech recognition is crucial for a hands-free speech interface. Therefore, we measured room impulse responses to investigate reverberant speech recognition. The results of evaluation experiments proved that CENSREC-4 is an effective database suitable for evaluating the new dereverberation method because the traditional dereverberation process had difficulty sufficiently improving the recognition performance. The framework was released in March 2008, and many studies are being conducted with it in Japan.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nishiura-etal-2008-evaluation">
<titleInfo>
<title>Evaluation Framework for Distant-talking Speech Recognition under Reverberant Environments: newest Part of the CENSREC Series -</title>
</titleInfo>
<name type="personal">
<namePart type="given">Takanobu</namePart>
<namePart type="family">Nishiura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masato</namePart>
<namePart type="family">Nakayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Denda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Norihide</namePart>
<namePart type="family">Kitaoka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazumasa</namePart>
<namePart type="family">Yamamoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takeshi</namePart>
<namePart type="family">Yamada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoru</namePart>
<namePart type="family">Tsuge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chiyomi</namePart>
<namePart type="family">Miyajima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masakiyo</namePart>
<namePart type="family">Fujimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tetsuya</namePart>
<namePart type="family">Takiguchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Tamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shingo</namePart>
<namePart type="family">Kuroiwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazuya</namePart>
<namePart type="family">Takeda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nakamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, speech recognition performance has been drastically improved by statistical methods and huge speech databases. Now performance improvement under such realistic environments as noisy conditions is being focused on. Since October 2001, we from the working group of the Information Processing Society in Japan have been working on evaluation methodologies and frameworks for Japanese noisy speech recognition. We have released frameworks including databases and evaluation tools called CENSREC-1 (Corpus and Environment for Noisy Speech RECognition 1; formerly AURORA-2J), CENSREC-2 (in-car connected digits recognition), CENSREC-3 (in-car isolated word recognition), and CENSREC-1-C (voice activity detection under noisy conditions). In this paper, we newly introduce a collection of databases and evaluation tools named CENSREC-4, which is an evaluation framework for distant-talking speech under hands-free conditions. Distant-talking speech recognition is crucial for a hands-free speech interface. Therefore, we measured room impulse responses to investigate reverberant speech recognition. The results of evaluation experiments proved that CENSREC-4 is an effective database suitable for evaluating the new dereverberation method because the traditional dereverberation process had difficulty sufficiently improving the recognition performance. The framework was released in March 2008, and many studies are being conducted with it in Japan.</abstract>
<identifier type="citekey">nishiura-etal-2008-evaluation</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2008/pdf/468_paper.pdf</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluation Framework for Distant-talking Speech Recognition under Reverberant Environments: newest Part of the CENSREC Series -
%A Nishiura, Takanobu
%A Nakayama, Masato
%A Denda, Yuki
%A Kitaoka, Norihide
%A Yamamoto, Kazumasa
%A Yamada, Takeshi
%A Tsuge, Satoru
%A Miyajima, Chiyomi
%A Fujimoto, Masakiyo
%A Takiguchi, Tetsuya
%A Tamura, Satoshi
%A Kuroiwa, Shingo
%A Takeda, Kazuya
%A Nakamura, Satoshi
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F nishiura-etal-2008-evaluation
%X Recently, speech recognition performance has been drastically improved by statistical methods and huge speech databases. Now performance improvement under such realistic environments as noisy conditions is being focused on. Since October 2001, we from the working group of the Information Processing Society in Japan have been working on evaluation methodologies and frameworks for Japanese noisy speech recognition. We have released frameworks including databases and evaluation tools called CENSREC-1 (Corpus and Environment for Noisy Speech RECognition 1; formerly AURORA-2J), CENSREC-2 (in-car connected digits recognition), CENSREC-3 (in-car isolated word recognition), and CENSREC-1-C (voice activity detection under noisy conditions). In this paper, we newly introduce a collection of databases and evaluation tools named CENSREC-4, which is an evaluation framework for distant-talking speech under hands-free conditions. Distant-talking speech recognition is crucial for a hands-free speech interface. Therefore, we measured room impulse responses to investigate reverberant speech recognition. The results of evaluation experiments proved that CENSREC-4 is an effective database suitable for evaluating the new dereverberation method because the traditional dereverberation process had difficulty sufficiently improving the recognition performance. The framework was released in March 2008, and many studies are being conducted with it in Japan.
%U http://www.lrec-conf.org/proceedings/lrec2008/pdf/468_paper.pdf
Markdown (Informal)
[Evaluation Framework for Distant-talking Speech Recognition under Reverberant Environments: newest Part of the CENSREC Series -](http://www.lrec-conf.org/proceedings/lrec2008/pdf/468_paper.pdf) (Nishiura et al., LREC 2008)
ACL
- Takanobu Nishiura, Masato Nakayama, Yuki Denda, Norihide Kitaoka, Kazumasa Yamamoto, Takeshi Yamada, Satoru Tsuge, Chiyomi Miyajima, Masakiyo Fujimoto, Tetsuya Takiguchi, Satoshi Tamura, Shingo Kuroiwa, Kazuya Takeda, and Satoshi Nakamura. 2008. Evaluation Framework for Distant-talking Speech Recognition under Reverberant Environments: newest Part of the CENSREC Series -. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08), Marrakech, Morocco. European Language Resources Association (ELRA).