@inproceedings{puscasu-mititelu-2008-annotation,
title = "Annotation of {W}ord{N}et Verbs with {T}ime{ML} Event Classes",
author = "Pu{\c{s}}ca{\c{s}}u, Georgiana and
Mititelu, Verginica Barbu",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}'08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2008/pdf/712_paper.pdf",
abstract = "This paper reports on the annotation of all English verbs included in WordNet 2.0 with TimeML event classes. Two annotators assign each verb present in WordNet the most relevant event class capturing most of that verbs meanings. At the end of the annotation process, inter-annotator agreement is measured using kappa statistics, yielding a kappa value of 0.87. The cases of disagreement between the two independent annotations are clarified by obtaining a third, and in some cases, a fourth opinion, and finally each of the 11,306 WordNet verbs is mapped to a unique event class. The resulted annotation is then employed to automatically assign the corresponding class to each occurrence of a finite or non-finite verb in a given text. The evaluation performed on TimeBank reveals an F-measure of 86.43{\%} achieved for the identification of verbal events, and an accuracy of 85.25{\%} in the task of classifying them into TimeML event classes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="puscasu-mititelu-2008-annotation">
<titleInfo>
<title>Annotation of WordNet Verbs with TimeML Event Classes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Georgiana</namePart>
<namePart type="family">Puşcaşu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Verginica</namePart>
<namePart type="given">Barbu</namePart>
<namePart type="family">Mititelu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper reports on the annotation of all English verbs included in WordNet 2.0 with TimeML event classes. Two annotators assign each verb present in WordNet the most relevant event class capturing most of that verbs meanings. At the end of the annotation process, inter-annotator agreement is measured using kappa statistics, yielding a kappa value of 0.87. The cases of disagreement between the two independent annotations are clarified by obtaining a third, and in some cases, a fourth opinion, and finally each of the 11,306 WordNet verbs is mapped to a unique event class. The resulted annotation is then employed to automatically assign the corresponding class to each occurrence of a finite or non-finite verb in a given text. The evaluation performed on TimeBank reveals an F-measure of 86.43% achieved for the identification of verbal events, and an accuracy of 85.25% in the task of classifying them into TimeML event classes.</abstract>
<identifier type="citekey">puscasu-mititelu-2008-annotation</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2008/pdf/712_paper.pdf</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Annotation of WordNet Verbs with TimeML Event Classes
%A Puşcaşu, Georgiana
%A Mititelu, Verginica Barbu
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F puscasu-mititelu-2008-annotation
%X This paper reports on the annotation of all English verbs included in WordNet 2.0 with TimeML event classes. Two annotators assign each verb present in WordNet the most relevant event class capturing most of that verbs meanings. At the end of the annotation process, inter-annotator agreement is measured using kappa statistics, yielding a kappa value of 0.87. The cases of disagreement between the two independent annotations are clarified by obtaining a third, and in some cases, a fourth opinion, and finally each of the 11,306 WordNet verbs is mapped to a unique event class. The resulted annotation is then employed to automatically assign the corresponding class to each occurrence of a finite or non-finite verb in a given text. The evaluation performed on TimeBank reveals an F-measure of 86.43% achieved for the identification of verbal events, and an accuracy of 85.25% in the task of classifying them into TimeML event classes.
%U http://www.lrec-conf.org/proceedings/lrec2008/pdf/712_paper.pdf
Markdown (Informal)
[Annotation of WordNet Verbs with TimeML Event Classes](http://www.lrec-conf.org/proceedings/lrec2008/pdf/712_paper.pdf) (Puşcaşu & Mititelu, LREC 2008)
ACL
- Georgiana Puşcaşu and Verginica Barbu Mititelu. 2008. Annotation of WordNet Verbs with TimeML Event Classes. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08), Marrakech, Morocco. European Language Resources Association (ELRA).