@inproceedings{isahara-etal-2008-application,
title = "Application of Resource-based Machine Translation to Real Business Scenes",
author = "Isahara, Hitoshi and
Utiyama, Masao and
Yamamoto, Eiko and
Terada, Akira and
Abe, Yasunori",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}'08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2008/pdf/780_paper.pdf",
abstract = "As huge quantities of documents have become available, services using natural language processing technologies trained by huge corpora have emerged, such as information retrieval and information extraction. In this paper we verify the usefulness of resource-based, or corpus-based, translation in the aviation domain as a real business situation. This study is important from both a business perspective and an academic perspective. Intuitively, manuals for similar products, or manuals for different versions of the same product, are likely to resemble each other. Therefore, even with only a small training data, a corpus-based MT system can output useful translations. The corpus-based approach is powerful when the target is repetitive. Manuals for similar products, or manuals for different versions of the same product, are real-world documents that are repetitive. Our experiments on translation of manual documents are still in a beginning stage. However, the BLEU score from very small number of training sentences is already rather high. We believe corpus-based machine translation is a player full of promise in this kind of actual business scene.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="isahara-etal-2008-application">
<titleInfo>
<title>Application of Resource-based Machine Translation to Real Business Scenes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masao</namePart>
<namePart type="family">Utiyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eiko</namePart>
<namePart type="family">Yamamoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akira</namePart>
<namePart type="family">Terada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yasunori</namePart>
<namePart type="family">Abe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>As huge quantities of documents have become available, services using natural language processing technologies trained by huge corpora have emerged, such as information retrieval and information extraction. In this paper we verify the usefulness of resource-based, or corpus-based, translation in the aviation domain as a real business situation. This study is important from both a business perspective and an academic perspective. Intuitively, manuals for similar products, or manuals for different versions of the same product, are likely to resemble each other. Therefore, even with only a small training data, a corpus-based MT system can output useful translations. The corpus-based approach is powerful when the target is repetitive. Manuals for similar products, or manuals for different versions of the same product, are real-world documents that are repetitive. Our experiments on translation of manual documents are still in a beginning stage. However, the BLEU score from very small number of training sentences is already rather high. We believe corpus-based machine translation is a player full of promise in this kind of actual business scene.</abstract>
<identifier type="citekey">isahara-etal-2008-application</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2008/pdf/780_paper.pdf</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Application of Resource-based Machine Translation to Real Business Scenes
%A Isahara, Hitoshi
%A Utiyama, Masao
%A Yamamoto, Eiko
%A Terada, Akira
%A Abe, Yasunori
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F isahara-etal-2008-application
%X As huge quantities of documents have become available, services using natural language processing technologies trained by huge corpora have emerged, such as information retrieval and information extraction. In this paper we verify the usefulness of resource-based, or corpus-based, translation in the aviation domain as a real business situation. This study is important from both a business perspective and an academic perspective. Intuitively, manuals for similar products, or manuals for different versions of the same product, are likely to resemble each other. Therefore, even with only a small training data, a corpus-based MT system can output useful translations. The corpus-based approach is powerful when the target is repetitive. Manuals for similar products, or manuals for different versions of the same product, are real-world documents that are repetitive. Our experiments on translation of manual documents are still in a beginning stage. However, the BLEU score from very small number of training sentences is already rather high. We believe corpus-based machine translation is a player full of promise in this kind of actual business scene.
%U http://www.lrec-conf.org/proceedings/lrec2008/pdf/780_paper.pdf
Markdown (Informal)
[Application of Resource-based Machine Translation to Real Business Scenes](http://www.lrec-conf.org/proceedings/lrec2008/pdf/780_paper.pdf) (Isahara et al., LREC 2008)
ACL