@inproceedings{frunza-2008-trainable,
title = "A Trainable Tokenizer, solution for multilingual texts and compound expression tokenization",
author = "Frunza, Oana",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}`08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L08-1590/",
abstract = "Tokenization is one of the initial steps done for almost any text processing task. It is not particularly recognized as a challenging task for English monolingual systems but it rapidly increases in complexity for systems that apply it for different languages. This article proposes a supervised learning approach to perform the tokenization task. The method presented in this article is based on character transitions representation, a representation that allows compound expressions to be recognized as a single token. Compound tokens are identified independent of the character that creates the expression. The method automatically learns tokenization rules from a pre-tokenized corpus. The results obtained using the trainable system show that for Romanian and English a statistical significant improvement is obtained over a baseline system that tokenizes texts on every non-alphanumeric character."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="frunza-2008-trainable">
<titleInfo>
<title>A Trainable Tokenizer, solution for multilingual texts and compound expression tokenization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Frunza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Tokenization is one of the initial steps done for almost any text processing task. It is not particularly recognized as a challenging task for English monolingual systems but it rapidly increases in complexity for systems that apply it for different languages. This article proposes a supervised learning approach to perform the tokenization task. The method presented in this article is based on character transitions representation, a representation that allows compound expressions to be recognized as a single token. Compound tokens are identified independent of the character that creates the expression. The method automatically learns tokenization rules from a pre-tokenized corpus. The results obtained using the trainable system show that for Romanian and English a statistical significant improvement is obtained over a baseline system that tokenizes texts on every non-alphanumeric character.</abstract>
<identifier type="citekey">frunza-2008-trainable</identifier>
<location>
<url>https://aclanthology.org/L08-1590/</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Trainable Tokenizer, solution for multilingual texts and compound expression tokenization
%A Frunza, Oana
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F frunza-2008-trainable
%X Tokenization is one of the initial steps done for almost any text processing task. It is not particularly recognized as a challenging task for English monolingual systems but it rapidly increases in complexity for systems that apply it for different languages. This article proposes a supervised learning approach to perform the tokenization task. The method presented in this article is based on character transitions representation, a representation that allows compound expressions to be recognized as a single token. Compound tokens are identified independent of the character that creates the expression. The method automatically learns tokenization rules from a pre-tokenized corpus. The results obtained using the trainable system show that for Romanian and English a statistical significant improvement is obtained over a baseline system that tokenizes texts on every non-alphanumeric character.
%U https://aclanthology.org/L08-1590/
Markdown (Informal)
[A Trainable Tokenizer, solution for multilingual texts and compound expression tokenization](https://aclanthology.org/L08-1590/) (Frunza, LREC 2008)
ACL