@inproceedings{murawaki-kurohashi-2010-online,
    title = "Online {J}apanese Unknown Morpheme Detection using Orthographic Variation",
    author = "Murawaki, Yugo  and
      Kurohashi, Sadao",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Odijk, Jan  and
      Piperidis, Stelios  and
      Rosner, Mike  and
      Tapias, Daniel",
    booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
    month = may,
    year = "2010",
    address = "Valletta, Malta",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://aclanthology.org/L10-1111/",
    abstract = "To solve the unknown morpheme problem in Japanese morphological analysis, we previously proposed a novel framework of online unknown morpheme acquisition and its implementation. This framework poses a previously unexplored problem, online unknown morpheme detection. Online unknown morpheme detection is a task of finding morphemes in each sentence that are not listed in a given lexicon. Unlike in English, it is a non-trivial task because Japanese does not delimit words by white space. We first present a baseline method that simply uses the output of the morphological analyzer. We then show that it fails to detect some unknown morphemes because they are over-segmented into shorter registered morphemes. To cope with this problem, we present a simple solution, the use of orthographic variation of Japanese. Under the assumption that orthographic variants behave similarly, each over-segmentation candidate is checked against its counterparts. Experiments show that the proposed method improves the recall of detection and contributes to improving unknown morpheme acquisition."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="murawaki-kurohashi-2010-online">
    <titleInfo>
        <title>Online Japanese Unknown Morpheme Detection using Orthographic Variation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Yugo</namePart>
        <namePart type="family">Murawaki</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sadao</namePart>
        <namePart type="family">Kurohashi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2010-05</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Nicoletta</namePart>
            <namePart type="family">Calzolari</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Khalid</namePart>
            <namePart type="family">Choukri</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Bente</namePart>
            <namePart type="family">Maegaard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Joseph</namePart>
            <namePart type="family">Mariani</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jan</namePart>
            <namePart type="family">Odijk</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Stelios</namePart>
            <namePart type="family">Piperidis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mike</namePart>
            <namePart type="family">Rosner</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Daniel</namePart>
            <namePart type="family">Tapias</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>European Language Resources Association (ELRA)</publisher>
            <place>
                <placeTerm type="text">Valletta, Malta</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>To solve the unknown morpheme problem in Japanese morphological analysis, we previously proposed a novel framework of online unknown morpheme acquisition and its implementation. This framework poses a previously unexplored problem, online unknown morpheme detection. Online unknown morpheme detection is a task of finding morphemes in each sentence that are not listed in a given lexicon. Unlike in English, it is a non-trivial task because Japanese does not delimit words by white space. We first present a baseline method that simply uses the output of the morphological analyzer. We then show that it fails to detect some unknown morphemes because they are over-segmented into shorter registered morphemes. To cope with this problem, we present a simple solution, the use of orthographic variation of Japanese. Under the assumption that orthographic variants behave similarly, each over-segmentation candidate is checked against its counterparts. Experiments show that the proposed method improves the recall of detection and contributes to improving unknown morpheme acquisition.</abstract>
    <identifier type="citekey">murawaki-kurohashi-2010-online</identifier>
    <location>
        <url>https://aclanthology.org/L10-1111/</url>
    </location>
    <part>
        <date>2010-05</date>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Online Japanese Unknown Morpheme Detection using Orthographic Variation
%A Murawaki, Yugo
%A Kurohashi, Sadao
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Rosner, Mike
%Y Tapias, Daniel
%S Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)
%D 2010
%8 May
%I European Language Resources Association (ELRA)
%C Valletta, Malta
%F murawaki-kurohashi-2010-online
%X To solve the unknown morpheme problem in Japanese morphological analysis, we previously proposed a novel framework of online unknown morpheme acquisition and its implementation. This framework poses a previously unexplored problem, online unknown morpheme detection. Online unknown morpheme detection is a task of finding morphemes in each sentence that are not listed in a given lexicon. Unlike in English, it is a non-trivial task because Japanese does not delimit words by white space. We first present a baseline method that simply uses the output of the morphological analyzer. We then show that it fails to detect some unknown morphemes because they are over-segmented into shorter registered morphemes. To cope with this problem, we present a simple solution, the use of orthographic variation of Japanese. Under the assumption that orthographic variants behave similarly, each over-segmentation candidate is checked against its counterparts. Experiments show that the proposed method improves the recall of detection and contributes to improving unknown morpheme acquisition.
%U https://aclanthology.org/L10-1111/
Markdown (Informal)
[Online Japanese Unknown Morpheme Detection using Orthographic Variation](https://aclanthology.org/L10-1111/) (Murawaki & Kurohashi, LREC 2010)
ACL