@inproceedings{koolen-krahmer-2010-tuna,
title = "The {D}-{TUNA} Corpus: A {D}utch Dataset for the Evaluation of Referring Expression Generation Algorithms",
author = "Koolen, Ruud and
Krahmer, Emiel",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Rosner, Mike and
Tapias, Daniel",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}`10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L10-1170/",
abstract = "We present the D-TUNA corpus, which is the first semantically annotated corpus of referring expressions in Dutch. Its primary function is to evaluate and improve the performance of REG algorithms. Such algorithms are computational models that automatically generate referring expressions by computing how a specific target can be identified to an addressee by distinguishing it from a set of distractor objects. We performed a large-scale production experiment, in which participants were asked to describe furniture items and people, and provided all descriptions with semantic information regarding the target and the distractor objects. Besides being useful for evaluating REG algorithms, the corpus addresses several other research goals. Firstly, the corpus contains both written and spoken referring expressions uttered in the direction of an addressee, which enables systematic analyses of how modality (text or speech) influences the human production of referring expressions. Secondly, due to its comparability with the English TUNA corpus, our Dutch corpus can be used to explore the differences between Dutch and English speakers regarding the production of referring expressions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koolen-krahmer-2010-tuna">
<titleInfo>
<title>The D-TUNA Corpus: A Dutch Dataset for the Evaluation of Referring Expression Generation Algorithms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruud</namePart>
<namePart type="family">Koolen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2010-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC‘10)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Rosner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Valletta, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the D-TUNA corpus, which is the first semantically annotated corpus of referring expressions in Dutch. Its primary function is to evaluate and improve the performance of REG algorithms. Such algorithms are computational models that automatically generate referring expressions by computing how a specific target can be identified to an addressee by distinguishing it from a set of distractor objects. We performed a large-scale production experiment, in which participants were asked to describe furniture items and people, and provided all descriptions with semantic information regarding the target and the distractor objects. Besides being useful for evaluating REG algorithms, the corpus addresses several other research goals. Firstly, the corpus contains both written and spoken referring expressions uttered in the direction of an addressee, which enables systematic analyses of how modality (text or speech) influences the human production of referring expressions. Secondly, due to its comparability with the English TUNA corpus, our Dutch corpus can be used to explore the differences between Dutch and English speakers regarding the production of referring expressions.</abstract>
<identifier type="citekey">koolen-krahmer-2010-tuna</identifier>
<location>
<url>https://aclanthology.org/L10-1170/</url>
</location>
<part>
<date>2010-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The D-TUNA Corpus: A Dutch Dataset for the Evaluation of Referring Expression Generation Algorithms
%A Koolen, Ruud
%A Krahmer, Emiel
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Rosner, Mike
%Y Tapias, Daniel
%S Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC‘10)
%D 2010
%8 May
%I European Language Resources Association (ELRA)
%C Valletta, Malta
%F koolen-krahmer-2010-tuna
%X We present the D-TUNA corpus, which is the first semantically annotated corpus of referring expressions in Dutch. Its primary function is to evaluate and improve the performance of REG algorithms. Such algorithms are computational models that automatically generate referring expressions by computing how a specific target can be identified to an addressee by distinguishing it from a set of distractor objects. We performed a large-scale production experiment, in which participants were asked to describe furniture items and people, and provided all descriptions with semantic information regarding the target and the distractor objects. Besides being useful for evaluating REG algorithms, the corpus addresses several other research goals. Firstly, the corpus contains both written and spoken referring expressions uttered in the direction of an addressee, which enables systematic analyses of how modality (text or speech) influences the human production of referring expressions. Secondly, due to its comparability with the English TUNA corpus, our Dutch corpus can be used to explore the differences between Dutch and English speakers regarding the production of referring expressions.
%U https://aclanthology.org/L10-1170/
Markdown (Informal)
[The D-TUNA Corpus: A Dutch Dataset for the Evaluation of Referring Expression Generation Algorithms](https://aclanthology.org/L10-1170/) (Koolen & Krahmer, LREC 2010)
ACL