@inproceedings{thwaites-etal-2010-lips,
title = "{LIPS}: A Tool for Predicting the Lexical Isolation Point of a Word",
author = "Thwaites, Andrew and
Geertzen, Jeroen and
Marslen-Wilson, William D. and
Buttery, Paula",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Rosner, Mike and
Tapias, Daniel",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/326_Paper.pdf",
abstract = "We present LIPS (Lexical Isolation Point Software), a tool for accurate lexical isolation point (IP) prediction in recordings of speech. The IP is the point in time in which a word is correctly recognised given the acoustic evidence available to the hearer. The ability to accurately determine lexical IPs is of importance to work in the field of cognitive processing, since it enables the evaluation of competing models of word recognition. IPs are also of importance in the field of neurolinguistics, where the analyses of high-temporal-resolution neuroimaging data require a precise time alignment of the observed brain activity with the linguistic input. LIPS provides an attractive alternative to costly multi-participant perception experiments by automatically computing IPs for arbitrary words. On a test set of words, the LIPS system predicts IPs with a mean difference from the actual IP of within 1ms. The difference from the predicted and actual IP approximate to a normal distribution with a standard deviation of around 80ms (depending on the model used).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="thwaites-etal-2010-lips">
<titleInfo>
<title>LIPS: A Tool for Predicting the Lexical Isolation Point of a Word</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Thwaites</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeroen</namePart>
<namePart type="family">Geertzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Marslen-Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paula</namePart>
<namePart type="family">Buttery</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2010-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Rosner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Valletta, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present LIPS (Lexical Isolation Point Software), a tool for accurate lexical isolation point (IP) prediction in recordings of speech. The IP is the point in time in which a word is correctly recognised given the acoustic evidence available to the hearer. The ability to accurately determine lexical IPs is of importance to work in the field of cognitive processing, since it enables the evaluation of competing models of word recognition. IPs are also of importance in the field of neurolinguistics, where the analyses of high-temporal-resolution neuroimaging data require a precise time alignment of the observed brain activity with the linguistic input. LIPS provides an attractive alternative to costly multi-participant perception experiments by automatically computing IPs for arbitrary words. On a test set of words, the LIPS system predicts IPs with a mean difference from the actual IP of within 1ms. The difference from the predicted and actual IP approximate to a normal distribution with a standard deviation of around 80ms (depending on the model used).</abstract>
<identifier type="citekey">thwaites-etal-2010-lips</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2010/pdf/326_Paper.pdf</url>
</location>
<part>
<date>2010-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LIPS: A Tool for Predicting the Lexical Isolation Point of a Word
%A Thwaites, Andrew
%A Geertzen, Jeroen
%A Marslen-Wilson, William D.
%A Buttery, Paula
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Rosner, Mike
%Y Tapias, Daniel
%S Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)
%D 2010
%8 May
%I European Language Resources Association (ELRA)
%C Valletta, Malta
%F thwaites-etal-2010-lips
%X We present LIPS (Lexical Isolation Point Software), a tool for accurate lexical isolation point (IP) prediction in recordings of speech. The IP is the point in time in which a word is correctly recognised given the acoustic evidence available to the hearer. The ability to accurately determine lexical IPs is of importance to work in the field of cognitive processing, since it enables the evaluation of competing models of word recognition. IPs are also of importance in the field of neurolinguistics, where the analyses of high-temporal-resolution neuroimaging data require a precise time alignment of the observed brain activity with the linguistic input. LIPS provides an attractive alternative to costly multi-participant perception experiments by automatically computing IPs for arbitrary words. On a test set of words, the LIPS system predicts IPs with a mean difference from the actual IP of within 1ms. The difference from the predicted and actual IP approximate to a normal distribution with a standard deviation of around 80ms (depending on the model used).
%U http://www.lrec-conf.org/proceedings/lrec2010/pdf/326_Paper.pdf
Markdown (Informal)
[LIPS: A Tool for Predicting the Lexical Isolation Point of a Word](http://www.lrec-conf.org/proceedings/lrec2010/pdf/326_Paper.pdf) (Thwaites et al., LREC 2010)
ACL