The Database of Catalan Adjectives

Roser Sanromà, Gemma Boleda


Abstract
We present the Database of Catalan Adjectives (DCA), a database with 2,296 adjective lemmata enriched with morphological, syntactic and semantic information. This set of adjectives has been collected from a fragment of the Corpus Textual Informatitzat de la Llengua Catalana of the Institut d’Estudis Catalans and constitutes a representative sample of the adjective class in Catalan as a whole. The database includes both manually coded and automatically extracted information regarding the most prominent properties used in the literature regarding the semantics of adjectives, such as morphological origin, suffix (if any), predicativity, gradability, adjective position with respect to the head noun, adjective modifiers, or semantic class. The DCA can be useful for NLP applications using adjectives (from POS-taggers to Opinion Mining applications) and for linguistic analysis regarding the morphological, syntactic, and semantic properties of adjectives. We now make it available to the research community under a Creative Commons Attribution Share Alike 3.0 Spain license.
Anthology ID:
L10-1255
Volume:
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)
Month:
May
Year:
2010
Address:
Valletta, Malta
Editors:
Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, Daniel Tapias
Venue:
LREC
SIG:
Publisher:
European Language Resources Association (ELRA)
Note:
Pages:
Language:
URL:
http://www.lrec-conf.org/proceedings/lrec2010/pdf/373_Paper.pdf
DOI:
Bibkey:
Cite (ACL):
Roser Sanromà and Gemma Boleda. 2010. The Database of Catalan Adjectives. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), Valletta, Malta. European Language Resources Association (ELRA).
Cite (Informal):
The Database of Catalan Adjectives (Sanromà & Boleda, LREC 2010)
Copy Citation:
PDF:
http://www.lrec-conf.org/proceedings/lrec2010/pdf/373_Paper.pdf