@inproceedings{poesio-etal-2010-babyexp,
title = "{B}aby{E}xp: Constructing a Huge Multimodal Resource to Acquire Commonsense Knowledge Like Children Do",
author = {Poesio, Massimo and
Baroni, Marco and
Lanz, Oswald and
Lenci, Alessandro and
Potamianos, Alexandros and
Sch{\"u}tze, Hinrich and
Schulte im Walde, Sabine and
Surian, Luca},
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Rosner, Mike and
Tapias, Daniel",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/455_Paper.pdf",
abstract = "There is by now widespread agreement that the most realistic way to construct the large-scale commonsense knowledge repositories required by natural language and artificial intelligence applications is by letting machines learn such knowledge from large quantities of data, like humans do. A lot of attention has consequently been paid to the development of increasingly sophisticated machine learning algorithms for knowledge extraction. However, the nature of the input that humans are exposed to while learning commonsense knowledge has received much less attention. The BabyExp project is collecting very dense audio and video recordings of the first 3 years of life of a baby. The corpus constructed in this way will be transcribed with automated techniques and made available to the research community. Moreover, techniques to extract commonsense conceptual knowledge incrementally from these multimodal data are also being explored within the project. The current paper describes BabyExp in general, and presents pilot studies on the feasibility of the automated audio and video transcriptions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="poesio-etal-2010-babyexp">
<titleInfo>
<title>BabyExp: Constructing a Huge Multimodal Resource to Acquire Commonsense Knowledge Like Children Do</title>
</titleInfo>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Poesio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Baroni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oswald</namePart>
<namePart type="family">Lanz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Potamianos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Schulte im Walde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luca</namePart>
<namePart type="family">Surian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2010-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Rosner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Valletta, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>There is by now widespread agreement that the most realistic way to construct the large-scale commonsense knowledge repositories required by natural language and artificial intelligence applications is by letting machines learn such knowledge from large quantities of data, like humans do. A lot of attention has consequently been paid to the development of increasingly sophisticated machine learning algorithms for knowledge extraction. However, the nature of the input that humans are exposed to while learning commonsense knowledge has received much less attention. The BabyExp project is collecting very dense audio and video recordings of the first 3 years of life of a baby. The corpus constructed in this way will be transcribed with automated techniques and made available to the research community. Moreover, techniques to extract commonsense conceptual knowledge incrementally from these multimodal data are also being explored within the project. The current paper describes BabyExp in general, and presents pilot studies on the feasibility of the automated audio and video transcriptions.</abstract>
<identifier type="citekey">poesio-etal-2010-babyexp</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2010/pdf/455_Paper.pdf</url>
</location>
<part>
<date>2010-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BabyExp: Constructing a Huge Multimodal Resource to Acquire Commonsense Knowledge Like Children Do
%A Poesio, Massimo
%A Baroni, Marco
%A Lanz, Oswald
%A Lenci, Alessandro
%A Potamianos, Alexandros
%A Schütze, Hinrich
%A Schulte im Walde, Sabine
%A Surian, Luca
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Rosner, Mike
%Y Tapias, Daniel
%S Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)
%D 2010
%8 May
%I European Language Resources Association (ELRA)
%C Valletta, Malta
%F poesio-etal-2010-babyexp
%X There is by now widespread agreement that the most realistic way to construct the large-scale commonsense knowledge repositories required by natural language and artificial intelligence applications is by letting machines learn such knowledge from large quantities of data, like humans do. A lot of attention has consequently been paid to the development of increasingly sophisticated machine learning algorithms for knowledge extraction. However, the nature of the input that humans are exposed to while learning commonsense knowledge has received much less attention. The BabyExp project is collecting very dense audio and video recordings of the first 3 years of life of a baby. The corpus constructed in this way will be transcribed with automated techniques and made available to the research community. Moreover, techniques to extract commonsense conceptual knowledge incrementally from these multimodal data are also being explored within the project. The current paper describes BabyExp in general, and presents pilot studies on the feasibility of the automated audio and video transcriptions.
%U http://www.lrec-conf.org/proceedings/lrec2010/pdf/455_Paper.pdf
Markdown (Informal)
[BabyExp: Constructing a Huge Multimodal Resource to Acquire Commonsense Knowledge Like Children Do](http://www.lrec-conf.org/proceedings/lrec2010/pdf/455_Paper.pdf) (Poesio et al., LREC 2010)
ACL