@inproceedings{mcnamee-etal-2010-evaluation,
title = "An Evaluation of Technologies for Knowledge Base Population",
author = "McNamee, Paul and
Dang, Hoa Trang and
Simpson, Heather and
Schone, Patrick and
Strassel, Stephanie M.",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Rosner, Mike and
Tapias, Daniel",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/634_Paper.pdf",
abstract = "Previous content extraction evaluations have neglected to address problems which complicate the incorporation of extracted information into an existing knowledge base. Previous question answering evaluations have likewise avoided tasks such as explicit disambiguation of target entities and handling a fixed set of questions about entities without previous determination of possible answers. In 2009 NIST conducted a Knowledge Base Population track at its Text Analysis Conference to unite the content extraction and question answering communities and jointly explore some of these issues. This exciting new evaluation attracted 13 teams from 6 countries that submitted results in two tasks, Entity Linking and Slot Filling. This paper explains the motivation and design of the tasks, describes the language resources that were developed for this evaluation, offers comparisons to previous community evaluations, and briefly summarizes the performance obtained by systems. We also identify relevant issues pertaining to target selection, challenging queries, and performance measures.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mcnamee-etal-2010-evaluation">
<titleInfo>
<title>An Evaluation of Technologies for Knowledge Base Population</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">McNamee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hoa</namePart>
<namePart type="given">Trang</namePart>
<namePart type="family">Dang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heather</namePart>
<namePart type="family">Simpson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Schone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephanie</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Strassel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2010-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Rosner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Valletta, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous content extraction evaluations have neglected to address problems which complicate the incorporation of extracted information into an existing knowledge base. Previous question answering evaluations have likewise avoided tasks such as explicit disambiguation of target entities and handling a fixed set of questions about entities without previous determination of possible answers. In 2009 NIST conducted a Knowledge Base Population track at its Text Analysis Conference to unite the content extraction and question answering communities and jointly explore some of these issues. This exciting new evaluation attracted 13 teams from 6 countries that submitted results in two tasks, Entity Linking and Slot Filling. This paper explains the motivation and design of the tasks, describes the language resources that were developed for this evaluation, offers comparisons to previous community evaluations, and briefly summarizes the performance obtained by systems. We also identify relevant issues pertaining to target selection, challenging queries, and performance measures.</abstract>
<identifier type="citekey">mcnamee-etal-2010-evaluation</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2010/pdf/634_Paper.pdf</url>
</location>
<part>
<date>2010-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Evaluation of Technologies for Knowledge Base Population
%A McNamee, Paul
%A Dang, Hoa Trang
%A Simpson, Heather
%A Schone, Patrick
%A Strassel, Stephanie M.
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Rosner, Mike
%Y Tapias, Daniel
%S Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)
%D 2010
%8 May
%I European Language Resources Association (ELRA)
%C Valletta, Malta
%F mcnamee-etal-2010-evaluation
%X Previous content extraction evaluations have neglected to address problems which complicate the incorporation of extracted information into an existing knowledge base. Previous question answering evaluations have likewise avoided tasks such as explicit disambiguation of target entities and handling a fixed set of questions about entities without previous determination of possible answers. In 2009 NIST conducted a Knowledge Base Population track at its Text Analysis Conference to unite the content extraction and question answering communities and jointly explore some of these issues. This exciting new evaluation attracted 13 teams from 6 countries that submitted results in two tasks, Entity Linking and Slot Filling. This paper explains the motivation and design of the tasks, describes the language resources that were developed for this evaluation, offers comparisons to previous community evaluations, and briefly summarizes the performance obtained by systems. We also identify relevant issues pertaining to target selection, challenging queries, and performance measures.
%U http://www.lrec-conf.org/proceedings/lrec2010/pdf/634_Paper.pdf
Markdown (Informal)
[An Evaluation of Technologies for Knowledge Base Population](http://www.lrec-conf.org/proceedings/lrec2010/pdf/634_Paper.pdf) (McNamee et al., LREC 2010)
ACL
- Paul McNamee, Hoa Trang Dang, Heather Simpson, Patrick Schone, and Stephanie M. Strassel. 2010. An Evaluation of Technologies for Knowledge Base Population. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), Valletta, Malta. European Language Resources Association (ELRA).