@inproceedings{fujii-2010-modeling,
title = "Modeling {W}ikipedia Articles to Enhance Encyclopedic Search",
author = "Fujii, Atsushi",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Rosner, Mike and
Tapias, Daniel",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/684_Paper.pdf",
abstract = "Reflecting the rapid growth of science, technology, and culture, it has become common practice to consult tools on the World Wide Web for various terms. Existing search engines provide an enormous volume of information, but retrieved information is not organized. Hand-compiled encyclopedias provide organized information, but the quantity of information is limited. To integrate the advantages of both tools, we have been proposing methods for encyclopedic search targeting information on the Web and patent information. In this paper, we propose a method to categorize multiple expository texts for a single term based on viewpoints. Because viewpoints required for explanation are different depending on the type of a term, such as animals and diseases, it is difficult to manually produce a large scale system. We use Wikipedia to extract a prototype of a viewpoint structure for each term type. We also use articles in Wikipedia for a machine learning method, which categorizes a given text into an appropriate viewpoint. We evaluate the effectiveness of our method experimentally.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fujii-2010-modeling">
<titleInfo>
<title>Modeling Wikipedia Articles to Enhance Encyclopedic Search</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atsushi</namePart>
<namePart type="family">Fujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2010-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Rosner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Valletta, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Reflecting the rapid growth of science, technology, and culture, it has become common practice to consult tools on the World Wide Web for various terms. Existing search engines provide an enormous volume of information, but retrieved information is not organized. Hand-compiled encyclopedias provide organized information, but the quantity of information is limited. To integrate the advantages of both tools, we have been proposing methods for encyclopedic search targeting information on the Web and patent information. In this paper, we propose a method to categorize multiple expository texts for a single term based on viewpoints. Because viewpoints required for explanation are different depending on the type of a term, such as animals and diseases, it is difficult to manually produce a large scale system. We use Wikipedia to extract a prototype of a viewpoint structure for each term type. We also use articles in Wikipedia for a machine learning method, which categorizes a given text into an appropriate viewpoint. We evaluate the effectiveness of our method experimentally.</abstract>
<identifier type="citekey">fujii-2010-modeling</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2010/pdf/684_Paper.pdf</url>
</location>
<part>
<date>2010-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Wikipedia Articles to Enhance Encyclopedic Search
%A Fujii, Atsushi
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Rosner, Mike
%Y Tapias, Daniel
%S Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)
%D 2010
%8 May
%I European Language Resources Association (ELRA)
%C Valletta, Malta
%F fujii-2010-modeling
%X Reflecting the rapid growth of science, technology, and culture, it has become common practice to consult tools on the World Wide Web for various terms. Existing search engines provide an enormous volume of information, but retrieved information is not organized. Hand-compiled encyclopedias provide organized information, but the quantity of information is limited. To integrate the advantages of both tools, we have been proposing methods for encyclopedic search targeting information on the Web and patent information. In this paper, we propose a method to categorize multiple expository texts for a single term based on viewpoints. Because viewpoints required for explanation are different depending on the type of a term, such as animals and diseases, it is difficult to manually produce a large scale system. We use Wikipedia to extract a prototype of a viewpoint structure for each term type. We also use articles in Wikipedia for a machine learning method, which categorizes a given text into an appropriate viewpoint. We evaluate the effectiveness of our method experimentally.
%U http://www.lrec-conf.org/proceedings/lrec2010/pdf/684_Paper.pdf
Markdown (Informal)
[Modeling Wikipedia Articles to Enhance Encyclopedic Search](http://www.lrec-conf.org/proceedings/lrec2010/pdf/684_Paper.pdf) (Fujii, LREC 2010)
ACL