@inproceedings{seddah-2010-exploring,
title = "Exploring the Spinal-{STIG} Model for Parsing {F}rench",
author = "Seddah, Djam{\'e}",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Rosner, Mike and
Tapias, Daniel",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/775_Paper.pdf",
abstract = "We evaluate statistical parsing of French using two probabilistic models derived from the Tree Adjoining Grammar framework: a Stochastic Tree Insertion Grammars model (STIG) and a specific instance of this formalism, called Spinal Tree Insertion Grammar model which exhibits interesting properties with regard to data sparseness issues common to small treebanks such as the Paris 7 French Treebank. Using David Chiangs STIG parser (Chiang, 2003), we present results of various experiments we conducted to explore those models for French parsing. The grammar induction makes use of a head percolation table tailored for the French Treebank and which is provided in this paper. Using two evaluation metrics, we found that the parsing performance of a STIG model is tied to the size of the underlying Tree Insertion Grammar, with a more compact grammar, a spinal STIG, outperforming a genuine STIG. We finally note that a ''``spinal'''' framework seems to emerge in the literature. Indeed, the use of vertical grammars such as Spinal STIG instead of horizontal grammars such as PCFGs, afflicted with well known data sparseness issues, seems to be a promising path toward better parsing performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="seddah-2010-exploring">
<titleInfo>
<title>Exploring the Spinal-STIG Model for Parsing French</title>
</titleInfo>
<name type="personal">
<namePart type="given">Djamé</namePart>
<namePart type="family">Seddah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2010-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Rosner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Valletta, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We evaluate statistical parsing of French using two probabilistic models derived from the Tree Adjoining Grammar framework: a Stochastic Tree Insertion Grammars model (STIG) and a specific instance of this formalism, called Spinal Tree Insertion Grammar model which exhibits interesting properties with regard to data sparseness issues common to small treebanks such as the Paris 7 French Treebank. Using David Chiangs STIG parser (Chiang, 2003), we present results of various experiments we conducted to explore those models for French parsing. The grammar induction makes use of a head percolation table tailored for the French Treebank and which is provided in this paper. Using two evaluation metrics, we found that the parsing performance of a STIG model is tied to the size of the underlying Tree Insertion Grammar, with a more compact grammar, a spinal STIG, outperforming a genuine STIG. We finally note that a ”“spinal”” framework seems to emerge in the literature. Indeed, the use of vertical grammars such as Spinal STIG instead of horizontal grammars such as PCFGs, afflicted with well known data sparseness issues, seems to be a promising path toward better parsing performance.</abstract>
<identifier type="citekey">seddah-2010-exploring</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2010/pdf/775_Paper.pdf</url>
</location>
<part>
<date>2010-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring the Spinal-STIG Model for Parsing French
%A Seddah, Djamé
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Rosner, Mike
%Y Tapias, Daniel
%S Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)
%D 2010
%8 May
%I European Language Resources Association (ELRA)
%C Valletta, Malta
%F seddah-2010-exploring
%X We evaluate statistical parsing of French using two probabilistic models derived from the Tree Adjoining Grammar framework: a Stochastic Tree Insertion Grammars model (STIG) and a specific instance of this formalism, called Spinal Tree Insertion Grammar model which exhibits interesting properties with regard to data sparseness issues common to small treebanks such as the Paris 7 French Treebank. Using David Chiangs STIG parser (Chiang, 2003), we present results of various experiments we conducted to explore those models for French parsing. The grammar induction makes use of a head percolation table tailored for the French Treebank and which is provided in this paper. Using two evaluation metrics, we found that the parsing performance of a STIG model is tied to the size of the underlying Tree Insertion Grammar, with a more compact grammar, a spinal STIG, outperforming a genuine STIG. We finally note that a ”“spinal”” framework seems to emerge in the literature. Indeed, the use of vertical grammars such as Spinal STIG instead of horizontal grammars such as PCFGs, afflicted with well known data sparseness issues, seems to be a promising path toward better parsing performance.
%U http://www.lrec-conf.org/proceedings/lrec2010/pdf/775_Paper.pdf
Markdown (Informal)
[Exploring the Spinal-STIG Model for Parsing French](http://www.lrec-conf.org/proceedings/lrec2010/pdf/775_Paper.pdf) (Seddah, LREC 2010)
ACL