@inproceedings{attia-etal-2010-automatically,
title = "An Automatically Built Named Entity Lexicon for {A}rabic",
author = "Attia, Mohammed and
Toral, Antonio and
Tounsi, Lamia and
Monachini, Monica and
van Genabith, Josef",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Rosner, Mike and
Tapias, Daniel",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}`10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L10-1548/",
abstract = "We have adapted and extended the automatic Multilingual, Interoperable Named Entity Lexicon approach to Arabic, using Arabic WordNet (AWN) and Arabic Wikipedia (AWK). First, we extract AWNs instantiable nouns and identify the corresponding categories and hyponym subcategories in AWK. Then, we exploit Wikipedia inter-lingual links to locate correspondences between articles in ten different languages in order to identify Named Entities (NEs). We apply keyword search on AWK abstracts to provide for Arabic articles that do not have a correspondence in any of the other languages. In addition, we perform a post-processing step to fetch further NEs from AWK not reachable through AWN. Finally, we investigate diacritization using matching with geonames databases, MADA-TOKAN tools and different heuristics for restoring vowel marks of Arabic NEs. Using this methodology, we have extracted approximately 45,000 Arabic NEs and built, to the best of our knowledge, the largest, most mature and well-structured Arabic NE lexical resource to date. We have stored and organised this lexicon following the LMF ISO standard. We conduct a quantitative and qualitative evaluation against a manually annotated gold standard and achieve precision scores from 95.83{\%} (with 66.13{\%} recall) to 99.31{\%} (with 61.45{\%} recall) according to different values of a threshold."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="attia-etal-2010-automatically">
<titleInfo>
<title>An Automatically Built Named Entity Lexicon for Arabic</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="family">Attia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Toral</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lamia</namePart>
<namePart type="family">Tounsi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Monica</namePart>
<namePart type="family">Monachini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">van Genabith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2010-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC‘10)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Rosner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Valletta, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We have adapted and extended the automatic Multilingual, Interoperable Named Entity Lexicon approach to Arabic, using Arabic WordNet (AWN) and Arabic Wikipedia (AWK). First, we extract AWNs instantiable nouns and identify the corresponding categories and hyponym subcategories in AWK. Then, we exploit Wikipedia inter-lingual links to locate correspondences between articles in ten different languages in order to identify Named Entities (NEs). We apply keyword search on AWK abstracts to provide for Arabic articles that do not have a correspondence in any of the other languages. In addition, we perform a post-processing step to fetch further NEs from AWK not reachable through AWN. Finally, we investigate diacritization using matching with geonames databases, MADA-TOKAN tools and different heuristics for restoring vowel marks of Arabic NEs. Using this methodology, we have extracted approximately 45,000 Arabic NEs and built, to the best of our knowledge, the largest, most mature and well-structured Arabic NE lexical resource to date. We have stored and organised this lexicon following the LMF ISO standard. We conduct a quantitative and qualitative evaluation against a manually annotated gold standard and achieve precision scores from 95.83% (with 66.13% recall) to 99.31% (with 61.45% recall) according to different values of a threshold.</abstract>
<identifier type="citekey">attia-etal-2010-automatically</identifier>
<location>
<url>https://aclanthology.org/L10-1548/</url>
</location>
<part>
<date>2010-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Automatically Built Named Entity Lexicon for Arabic
%A Attia, Mohammed
%A Toral, Antonio
%A Tounsi, Lamia
%A Monachini, Monica
%A van Genabith, Josef
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Rosner, Mike
%Y Tapias, Daniel
%S Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC‘10)
%D 2010
%8 May
%I European Language Resources Association (ELRA)
%C Valletta, Malta
%F attia-etal-2010-automatically
%X We have adapted and extended the automatic Multilingual, Interoperable Named Entity Lexicon approach to Arabic, using Arabic WordNet (AWN) and Arabic Wikipedia (AWK). First, we extract AWNs instantiable nouns and identify the corresponding categories and hyponym subcategories in AWK. Then, we exploit Wikipedia inter-lingual links to locate correspondences between articles in ten different languages in order to identify Named Entities (NEs). We apply keyword search on AWK abstracts to provide for Arabic articles that do not have a correspondence in any of the other languages. In addition, we perform a post-processing step to fetch further NEs from AWK not reachable through AWN. Finally, we investigate diacritization using matching with geonames databases, MADA-TOKAN tools and different heuristics for restoring vowel marks of Arabic NEs. Using this methodology, we have extracted approximately 45,000 Arabic NEs and built, to the best of our knowledge, the largest, most mature and well-structured Arabic NE lexical resource to date. We have stored and organised this lexicon following the LMF ISO standard. We conduct a quantitative and qualitative evaluation against a manually annotated gold standard and achieve precision scores from 95.83% (with 66.13% recall) to 99.31% (with 61.45% recall) according to different values of a threshold.
%U https://aclanthology.org/L10-1548/
Markdown (Informal)
[An Automatically Built Named Entity Lexicon for Arabic](https://aclanthology.org/L10-1548/) (Attia et al., LREC 2010)
ACL
- Mohammed Attia, Antonio Toral, Lamia Tounsi, Monica Monachini, and Josef van Genabith. 2010. An Automatically Built Named Entity Lexicon for Arabic. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), Valletta, Malta. European Language Resources Association (ELRA).