@inproceedings{strassel-etal-2010-darpa,
    title = "The {DARPA} Machine Reading Program - Encouraging Linguistic and Reasoning Research with a Series of Reading Tasks",
    author = "Strassel, Stephanie  and
      Adams, Dan  and
      Goldberg, Henry  and
      Herr, Jonathan  and
      Keesing, Ron  and
      Oblinger, Daniel  and
      Simpson, Heather  and
      Schrag, Robert  and
      Wright, Jonathan",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Odijk, Jan  and
      Piperidis, Stelios  and
      Rosner, Mike  and
      Tapias, Daniel",
    booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
    month = may,
    year = "2010",
    address = "Valletta, Malta",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://aclanthology.org/L10-1595/",
    abstract = "The goal of DARPAs Machine Reading (MR) program is nothing less than making the worlds natural language corpora available for formal processing. Most text processing research has focused on locating mission-relevant text (information retrieval) and on techniques for enriching text by transforming it to other forms of text (translation, summarization) {\textemdash} always for use by humans. In contrast, MR will make knowledge contained in text available in forms that machines can use for automated processing. This will be done with little human intervention. Machines will learn to read from a few examples and they will read to learn what they need in order to answer questions or perform some reasoning task. Three independent Reading Teams are building universal text engines which will capture knowledge from naturally occurring text and transform it into the formal representations used by Artificial Intelligence. An Evaluation Team is selecting and annotating text corpora with task domain concepts, creating model reasoning systems with which the reading systems will interact, and establishing question-answer sets and evaluation protocols to measure progress toward this goal. We describe development of the MR evaluation framework, including test protocols, linguistic resources and technical infrastructure."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="strassel-etal-2010-darpa">
    <titleInfo>
        <title>The DARPA Machine Reading Program - Encouraging Linguistic and Reasoning Research with a Series of Reading Tasks</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Stephanie</namePart>
        <namePart type="family">Strassel</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Dan</namePart>
        <namePart type="family">Adams</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Henry</namePart>
        <namePart type="family">Goldberg</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jonathan</namePart>
        <namePart type="family">Herr</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ron</namePart>
        <namePart type="family">Keesing</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Daniel</namePart>
        <namePart type="family">Oblinger</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Heather</namePart>
        <namePart type="family">Simpson</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Robert</namePart>
        <namePart type="family">Schrag</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jonathan</namePart>
        <namePart type="family">Wright</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2010-05</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Nicoletta</namePart>
            <namePart type="family">Calzolari</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Khalid</namePart>
            <namePart type="family">Choukri</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Bente</namePart>
            <namePart type="family">Maegaard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Joseph</namePart>
            <namePart type="family">Mariani</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jan</namePart>
            <namePart type="family">Odijk</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Stelios</namePart>
            <namePart type="family">Piperidis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mike</namePart>
            <namePart type="family">Rosner</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Daniel</namePart>
            <namePart type="family">Tapias</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>European Language Resources Association (ELRA)</publisher>
            <place>
                <placeTerm type="text">Valletta, Malta</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The goal of DARPAs Machine Reading (MR) program is nothing less than making the worlds natural language corpora available for formal processing. Most text processing research has focused on locating mission-relevant text (information retrieval) and on techniques for enriching text by transforming it to other forms of text (translation, summarization) — always for use by humans. In contrast, MR will make knowledge contained in text available in forms that machines can use for automated processing. This will be done with little human intervention. Machines will learn to read from a few examples and they will read to learn what they need in order to answer questions or perform some reasoning task. Three independent Reading Teams are building universal text engines which will capture knowledge from naturally occurring text and transform it into the formal representations used by Artificial Intelligence. An Evaluation Team is selecting and annotating text corpora with task domain concepts, creating model reasoning systems with which the reading systems will interact, and establishing question-answer sets and evaluation protocols to measure progress toward this goal. We describe development of the MR evaluation framework, including test protocols, linguistic resources and technical infrastructure.</abstract>
    <identifier type="citekey">strassel-etal-2010-darpa</identifier>
    <location>
        <url>https://aclanthology.org/L10-1595/</url>
    </location>
    <part>
        <date>2010-05</date>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The DARPA Machine Reading Program - Encouraging Linguistic and Reasoning Research with a Series of Reading Tasks
%A Strassel, Stephanie
%A Adams, Dan
%A Goldberg, Henry
%A Herr, Jonathan
%A Keesing, Ron
%A Oblinger, Daniel
%A Simpson, Heather
%A Schrag, Robert
%A Wright, Jonathan
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Rosner, Mike
%Y Tapias, Daniel
%S Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)
%D 2010
%8 May
%I European Language Resources Association (ELRA)
%C Valletta, Malta
%F strassel-etal-2010-darpa
%X The goal of DARPAs Machine Reading (MR) program is nothing less than making the worlds natural language corpora available for formal processing. Most text processing research has focused on locating mission-relevant text (information retrieval) and on techniques for enriching text by transforming it to other forms of text (translation, summarization) — always for use by humans. In contrast, MR will make knowledge contained in text available in forms that machines can use for automated processing. This will be done with little human intervention. Machines will learn to read from a few examples and they will read to learn what they need in order to answer questions or perform some reasoning task. Three independent Reading Teams are building universal text engines which will capture knowledge from naturally occurring text and transform it into the formal representations used by Artificial Intelligence. An Evaluation Team is selecting and annotating text corpora with task domain concepts, creating model reasoning systems with which the reading systems will interact, and establishing question-answer sets and evaluation protocols to measure progress toward this goal. We describe development of the MR evaluation framework, including test protocols, linguistic resources and technical infrastructure.
%U https://aclanthology.org/L10-1595/
Markdown (Informal)
[The DARPA Machine Reading Program - Encouraging Linguistic and Reasoning Research with a Series of Reading Tasks](https://aclanthology.org/L10-1595/) (Strassel et al., LREC 2010)
ACL
- Stephanie Strassel, Dan Adams, Henry Goldberg, Jonathan Herr, Ron Keesing, Daniel Oblinger, Heather Simpson, Robert Schrag, and Jonathan Wright. 2010. The DARPA Machine Reading Program - Encouraging Linguistic and Reasoning Research with a Series of Reading Tasks. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), Valletta, Malta. European Language Resources Association (ELRA).