@inproceedings{filatova-2012-irony,
title = "Irony and Sarcasm: Corpus Generation and Analysis Using Crowdsourcing",
author = "Filatova, Elena",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}`12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L12-1386/",
pages = "392--398",
abstract = "The ability to reliably identify sarcasm and irony in text can improve the performance of many Natural Language Processing (NLP) systems including summarization, sentiment analysis, etc. The existing sarcasm detection systems have focused on identifying sarcasm on a sentence level or for a specific phrase. However, often it is impossible to identify a sentence containing sarcasm without knowing the context. In this paper we describe a corpus generation experiment where we collect regular and sarcastic Amazon product reviews. We perform qualitative and quantitative analysis of the corpus. The resulting corpus can be used for identifying sarcasm on two levels: a document and a text utterance (where a text utterance can be as short as a sentence and as long as a whole document)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="filatova-2012-irony">
<titleInfo>
<title>Irony and Sarcasm: Corpus Generation and Analysis Using Crowdsourcing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Filatova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC‘12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="given">Uğur</namePart>
<namePart type="family">Doğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Istanbul, Turkey</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The ability to reliably identify sarcasm and irony in text can improve the performance of many Natural Language Processing (NLP) systems including summarization, sentiment analysis, etc. The existing sarcasm detection systems have focused on identifying sarcasm on a sentence level or for a specific phrase. However, often it is impossible to identify a sentence containing sarcasm without knowing the context. In this paper we describe a corpus generation experiment where we collect regular and sarcastic Amazon product reviews. We perform qualitative and quantitative analysis of the corpus. The resulting corpus can be used for identifying sarcasm on two levels: a document and a text utterance (where a text utterance can be as short as a sentence and as long as a whole document).</abstract>
<identifier type="citekey">filatova-2012-irony</identifier>
<location>
<url>https://aclanthology.org/L12-1386/</url>
</location>
<part>
<date>2012-05</date>
<extent unit="page">
<start>392</start>
<end>398</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Irony and Sarcasm: Corpus Generation and Analysis Using Crowdsourcing
%A Filatova, Elena
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Doğan, Mehmet Uğur
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC‘12)
%D 2012
%8 May
%I European Language Resources Association (ELRA)
%C Istanbul, Turkey
%F filatova-2012-irony
%X The ability to reliably identify sarcasm and irony in text can improve the performance of many Natural Language Processing (NLP) systems including summarization, sentiment analysis, etc. The existing sarcasm detection systems have focused on identifying sarcasm on a sentence level or for a specific phrase. However, often it is impossible to identify a sentence containing sarcasm without knowing the context. In this paper we describe a corpus generation experiment where we collect regular and sarcastic Amazon product reviews. We perform qualitative and quantitative analysis of the corpus. The resulting corpus can be used for identifying sarcasm on two levels: a document and a text utterance (where a text utterance can be as short as a sentence and as long as a whole document).
%U https://aclanthology.org/L12-1386/
%P 392-398
Markdown (Informal)
[Irony and Sarcasm: Corpus Generation and Analysis Using Crowdsourcing](https://aclanthology.org/L12-1386/) (Filatova, LREC 2012)
ACL