@inproceedings{pardelli-etal-2012-medical,
title = "From medical language processing to {B}io{NLP} domain",
author = "Pardelli, Gabriella and
Sassi, Manuela and
Goggi, Sara and
Biagioni, Stefania",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/687_Paper.pdf",
pages = "2049--2055",
abstract = "This paper presents the results of a terminological work on a reference corpus in the domain of Biomedicine. In particular, the research tends to analyse the use of certain terms in Biomedicine in order to verify their change over the time with the aim of retrieving from the net the very essence of documentation. The terminological sample contains words used in BioNLP and biomedicine and identifies which terms are passing from scientific publications to the daily press and which are rather reserved to scientific production. The final scope of this work is to determine how scientific dissemination to an ever larger part of the society enables a public of common citizens to approach communication on biomedical research and development; and its main source is a reference corpus made up of three main repositories from which information related to BioNLP and Biomedicine is extracted. The paper is divided in three sections: 1) an introduction dedicated to data extracted from scientific documentation; 2) the second section devoted to methodology and data description; 3) the third part containing a statistical representation of terms extracted from the archive: indexes and concordances allow to reflect on the use of certain terms in this field and give possible keys for having access to the extraction of knowledge in the digital era.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pardelli-etal-2012-medical">
<titleInfo>
<title>From medical language processing to BioNLP domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Pardelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuela</namePart>
<namePart type="family">Sassi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">Biagioni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="given">Uğur</namePart>
<namePart type="family">Doğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Istanbul, Turkey</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the results of a terminological work on a reference corpus in the domain of Biomedicine. In particular, the research tends to analyse the use of certain terms in Biomedicine in order to verify their change over the time with the aim of retrieving from the net the very essence of documentation. The terminological sample contains words used in BioNLP and biomedicine and identifies which terms are passing from scientific publications to the daily press and which are rather reserved to scientific production. The final scope of this work is to determine how scientific dissemination to an ever larger part of the society enables a public of common citizens to approach communication on biomedical research and development; and its main source is a reference corpus made up of three main repositories from which information related to BioNLP and Biomedicine is extracted. The paper is divided in three sections: 1) an introduction dedicated to data extracted from scientific documentation; 2) the second section devoted to methodology and data description; 3) the third part containing a statistical representation of terms extracted from the archive: indexes and concordances allow to reflect on the use of certain terms in this field and give possible keys for having access to the extraction of knowledge in the digital era.</abstract>
<identifier type="citekey">pardelli-etal-2012-medical</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2012/pdf/687_Paper.pdf</url>
</location>
<part>
<date>2012-05</date>
<extent unit="page">
<start>2049</start>
<end>2055</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From medical language processing to BioNLP domain
%A Pardelli, Gabriella
%A Sassi, Manuela
%A Goggi, Sara
%A Biagioni, Stefania
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Doğan, Mehmet Uğur
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)
%D 2012
%8 May
%I European Language Resources Association (ELRA)
%C Istanbul, Turkey
%F pardelli-etal-2012-medical
%X This paper presents the results of a terminological work on a reference corpus in the domain of Biomedicine. In particular, the research tends to analyse the use of certain terms in Biomedicine in order to verify their change over the time with the aim of retrieving from the net the very essence of documentation. The terminological sample contains words used in BioNLP and biomedicine and identifies which terms are passing from scientific publications to the daily press and which are rather reserved to scientific production. The final scope of this work is to determine how scientific dissemination to an ever larger part of the society enables a public of common citizens to approach communication on biomedical research and development; and its main source is a reference corpus made up of three main repositories from which information related to BioNLP and Biomedicine is extracted. The paper is divided in three sections: 1) an introduction dedicated to data extracted from scientific documentation; 2) the second section devoted to methodology and data description; 3) the third part containing a statistical representation of terms extracted from the archive: indexes and concordances allow to reflect on the use of certain terms in this field and give possible keys for having access to the extraction of knowledge in the digital era.
%U http://www.lrec-conf.org/proceedings/lrec2012/pdf/687_Paper.pdf
%P 2049-2055
Markdown (Informal)
[From medical language processing to BioNLP domain](http://www.lrec-conf.org/proceedings/lrec2012/pdf/687_Paper.pdf) (Pardelli et al., LREC 2012)
ACL
- Gabriella Pardelli, Manuela Sassi, Sara Goggi, and Stefania Biagioni. 2012. From medical language processing to BioNLP domain. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 2049–2055, Istanbul, Turkey. European Language Resources Association (ELRA).