@inproceedings{bianchi-etal-2012-creation,
title = "Creation of a bottom-up corpus-based ontology for {I}talian Linguistics",
author = "Bianchi, Elisa and
Tavosanis, Mirko and
Giovannetti, Emiliano",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/732_Paper.pdf",
pages = "2641--2647",
abstract = "This paper describes the steps of construction of a shallow lexical ontology of Italian Linguistics, set to be used by a meta-search engine for query refinement. The ontology was constructed with the software Prot{\'e}g{\'e} 4.0.2 and is in OWL format; its construction has been carried out following the steps described in the well-known Ontology Learning From Text (OLFT) layer cake. The starting point was the automatic term extraction from a corpus of web documents concerning the domain of interest (304,000 words); as regards corpus construction, we describe the main criteria of the web documents selection and its critical points, concerning the definition of user profile and of degrees of specialisation. We describe then the process of term validation and construction of a glossary of terms of Italian Linguistics; afterwards, we outline the identification of synonymic chains and the main criteria of ontology design: top classes of ontology are Concept (containing taxonomy of concepts) and Terms (containing terms of the glossary as instances), while concepts are linked through part-whole and involved-role relation, both borrowed from Wordnet. Finally, we show some examples of the application of the ontology for query refinement.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bianchi-etal-2012-creation">
<titleInfo>
<title>Creation of a bottom-up corpus-based ontology for Italian Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Bianchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirko</namePart>
<namePart type="family">Tavosanis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emiliano</namePart>
<namePart type="family">Giovannetti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="given">Uğur</namePart>
<namePart type="family">Doğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Istanbul, Turkey</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the steps of construction of a shallow lexical ontology of Italian Linguistics, set to be used by a meta-search engine for query refinement. The ontology was constructed with the software Protégé 4.0.2 and is in OWL format; its construction has been carried out following the steps described in the well-known Ontology Learning From Text (OLFT) layer cake. The starting point was the automatic term extraction from a corpus of web documents concerning the domain of interest (304,000 words); as regards corpus construction, we describe the main criteria of the web documents selection and its critical points, concerning the definition of user profile and of degrees of specialisation. We describe then the process of term validation and construction of a glossary of terms of Italian Linguistics; afterwards, we outline the identification of synonymic chains and the main criteria of ontology design: top classes of ontology are Concept (containing taxonomy of concepts) and Terms (containing terms of the glossary as instances), while concepts are linked through part-whole and involved-role relation, both borrowed from Wordnet. Finally, we show some examples of the application of the ontology for query refinement.</abstract>
<identifier type="citekey">bianchi-etal-2012-creation</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2012/pdf/732_Paper.pdf</url>
</location>
<part>
<date>2012-05</date>
<extent unit="page">
<start>2641</start>
<end>2647</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Creation of a bottom-up corpus-based ontology for Italian Linguistics
%A Bianchi, Elisa
%A Tavosanis, Mirko
%A Giovannetti, Emiliano
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Doğan, Mehmet Uğur
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)
%D 2012
%8 May
%I European Language Resources Association (ELRA)
%C Istanbul, Turkey
%F bianchi-etal-2012-creation
%X This paper describes the steps of construction of a shallow lexical ontology of Italian Linguistics, set to be used by a meta-search engine for query refinement. The ontology was constructed with the software Protégé 4.0.2 and is in OWL format; its construction has been carried out following the steps described in the well-known Ontology Learning From Text (OLFT) layer cake. The starting point was the automatic term extraction from a corpus of web documents concerning the domain of interest (304,000 words); as regards corpus construction, we describe the main criteria of the web documents selection and its critical points, concerning the definition of user profile and of degrees of specialisation. We describe then the process of term validation and construction of a glossary of terms of Italian Linguistics; afterwards, we outline the identification of synonymic chains and the main criteria of ontology design: top classes of ontology are Concept (containing taxonomy of concepts) and Terms (containing terms of the glossary as instances), while concepts are linked through part-whole and involved-role relation, both borrowed from Wordnet. Finally, we show some examples of the application of the ontology for query refinement.
%U http://www.lrec-conf.org/proceedings/lrec2012/pdf/732_Paper.pdf
%P 2641-2647
Markdown (Informal)
[Creation of a bottom-up corpus-based ontology for Italian Linguistics](http://www.lrec-conf.org/proceedings/lrec2012/pdf/732_Paper.pdf) (Bianchi et al., LREC 2012)
ACL