@inproceedings{comelles-etal-2012-verta,
title = "{VERT}a: Linguistic features in {MT} evaluation",
author = "Comelles, Elisabet and
Atserias, Jordi and
Arranz, Victoria and
Castell{\'o}n, Irene",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/763_Paper.pdf",
pages = "3944--3950",
abstract = "In the last decades, a wide range of automatic metrics that use linguistic knowledge has been developed. Some of them are based on lexical information, such as METEOR; others rely on the use of syntax, either using constituent or dependency analysis; and others use semantic information, such as Named Entities and semantic roles. All these metrics work at a specific linguistic level, but some researchers have tried to combine linguistic information, either by combining several metrics following a machine-learning approach or focusing on the combination of a wide variety of metrics in a simple and straightforward way. However, little research has been conducted on how to combine linguistic features from a linguistic point of view. In this paper we present VERTa, a metric which aims at using and combining a wide variety of linguistic features at lexical, morphological, syntactic and semantic level. We provide a description of the metric and report some preliminary experiments which will help us to discuss the use and combination of certain linguistic features in order to improve the metric performance",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="comelles-etal-2012-verta">
<titleInfo>
<title>VERTa: Linguistic features in MT evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elisabet</namePart>
<namePart type="family">Comelles</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordi</namePart>
<namePart type="family">Atserias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Arranz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Irene</namePart>
<namePart type="family">Castellón</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="given">Uğur</namePart>
<namePart type="family">Doğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Istanbul, Turkey</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the last decades, a wide range of automatic metrics that use linguistic knowledge has been developed. Some of them are based on lexical information, such as METEOR; others rely on the use of syntax, either using constituent or dependency analysis; and others use semantic information, such as Named Entities and semantic roles. All these metrics work at a specific linguistic level, but some researchers have tried to combine linguistic information, either by combining several metrics following a machine-learning approach or focusing on the combination of a wide variety of metrics in a simple and straightforward way. However, little research has been conducted on how to combine linguistic features from a linguistic point of view. In this paper we present VERTa, a metric which aims at using and combining a wide variety of linguistic features at lexical, morphological, syntactic and semantic level. We provide a description of the metric and report some preliminary experiments which will help us to discuss the use and combination of certain linguistic features in order to improve the metric performance</abstract>
<identifier type="citekey">comelles-etal-2012-verta</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2012/pdf/763_Paper.pdf</url>
</location>
<part>
<date>2012-05</date>
<extent unit="page">
<start>3944</start>
<end>3950</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T VERTa: Linguistic features in MT evaluation
%A Comelles, Elisabet
%A Atserias, Jordi
%A Arranz, Victoria
%A Castellón, Irene
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Doğan, Mehmet Uğur
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)
%D 2012
%8 May
%I European Language Resources Association (ELRA)
%C Istanbul, Turkey
%F comelles-etal-2012-verta
%X In the last decades, a wide range of automatic metrics that use linguistic knowledge has been developed. Some of them are based on lexical information, such as METEOR; others rely on the use of syntax, either using constituent or dependency analysis; and others use semantic information, such as Named Entities and semantic roles. All these metrics work at a specific linguistic level, but some researchers have tried to combine linguistic information, either by combining several metrics following a machine-learning approach or focusing on the combination of a wide variety of metrics in a simple and straightforward way. However, little research has been conducted on how to combine linguistic features from a linguistic point of view. In this paper we present VERTa, a metric which aims at using and combining a wide variety of linguistic features at lexical, morphological, syntactic and semantic level. We provide a description of the metric and report some preliminary experiments which will help us to discuss the use and combination of certain linguistic features in order to improve the metric performance
%U http://www.lrec-conf.org/proceedings/lrec2012/pdf/763_Paper.pdf
%P 3944-3950
Markdown (Informal)
[VERTa: Linguistic features in MT evaluation](http://www.lrec-conf.org/proceedings/lrec2012/pdf/763_Paper.pdf) (Comelles et al., LREC 2012)
ACL
- Elisabet Comelles, Jordi Atserias, Victoria Arranz, and Irene Castellón. 2012. VERTa: Linguistic features in MT evaluation. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 3944–3950, Istanbul, Turkey. European Language Resources Association (ELRA).