@inproceedings{quarteroni-etal-2012-evaluating,
title = "Evaluating Multi-focus Natural Language Queries over Data Services",
author = "Quarteroni, Silvia and
Guerrisi, Vincenzo and
Torre, Pietro La",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}`12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L12-1468/",
pages = "2547--2552",
abstract = "Natural language interfaces to data services will be a key technology to guarantee access to huge data repositories in an effortless way. This involves solving the complex problem of recognizing a relevant service or service composition given an ambiguous, potentially ungrammatical natural language question. As a first step toward this goal, we study methods for identifying the salient terms (or foci) in natural language questions, classifying the latter according to a taxonomy of services and extracting additional relevant information in order to route them to suitable data services. While current approaches deal with single-focus (and therefore single-domain) questions, we investigate multi-focus questions in the aim of supporting conjunctive queries over the data services they refer to. Since such complex queries have seldom been studied in the literature, we have collected an ad-hoc dataset, SeCo-600, containing 600 multi-domain queries annotated with a number of linguistic and pragmatic features. Our experiments with the dataset have allowed us to reach very high accuracy in different phases of query analysis, especially when adopting machine learning methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="quarteroni-etal-2012-evaluating">
<titleInfo>
<title>Evaluating Multi-focus Natural Language Queries over Data Services</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silvia</namePart>
<namePart type="family">Quarteroni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincenzo</namePart>
<namePart type="family">Guerrisi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pietro</namePart>
<namePart type="given">La</namePart>
<namePart type="family">Torre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC‘12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="given">Uğur</namePart>
<namePart type="family">Doğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Istanbul, Turkey</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural language interfaces to data services will be a key technology to guarantee access to huge data repositories in an effortless way. This involves solving the complex problem of recognizing a relevant service or service composition given an ambiguous, potentially ungrammatical natural language question. As a first step toward this goal, we study methods for identifying the salient terms (or foci) in natural language questions, classifying the latter according to a taxonomy of services and extracting additional relevant information in order to route them to suitable data services. While current approaches deal with single-focus (and therefore single-domain) questions, we investigate multi-focus questions in the aim of supporting conjunctive queries over the data services they refer to. Since such complex queries have seldom been studied in the literature, we have collected an ad-hoc dataset, SeCo-600, containing 600 multi-domain queries annotated with a number of linguistic and pragmatic features. Our experiments with the dataset have allowed us to reach very high accuracy in different phases of query analysis, especially when adopting machine learning methods.</abstract>
<identifier type="citekey">quarteroni-etal-2012-evaluating</identifier>
<location>
<url>https://aclanthology.org/L12-1468/</url>
</location>
<part>
<date>2012-05</date>
<extent unit="page">
<start>2547</start>
<end>2552</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating Multi-focus Natural Language Queries over Data Services
%A Quarteroni, Silvia
%A Guerrisi, Vincenzo
%A Torre, Pietro La
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Doğan, Mehmet Uğur
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC‘12)
%D 2012
%8 May
%I European Language Resources Association (ELRA)
%C Istanbul, Turkey
%F quarteroni-etal-2012-evaluating
%X Natural language interfaces to data services will be a key technology to guarantee access to huge data repositories in an effortless way. This involves solving the complex problem of recognizing a relevant service or service composition given an ambiguous, potentially ungrammatical natural language question. As a first step toward this goal, we study methods for identifying the salient terms (or foci) in natural language questions, classifying the latter according to a taxonomy of services and extracting additional relevant information in order to route them to suitable data services. While current approaches deal with single-focus (and therefore single-domain) questions, we investigate multi-focus questions in the aim of supporting conjunctive queries over the data services they refer to. Since such complex queries have seldom been studied in the literature, we have collected an ad-hoc dataset, SeCo-600, containing 600 multi-domain queries annotated with a number of linguistic and pragmatic features. Our experiments with the dataset have allowed us to reach very high accuracy in different phases of query analysis, especially when adopting machine learning methods.
%U https://aclanthology.org/L12-1468/
%P 2547-2552
Markdown (Informal)
[Evaluating Multi-focus Natural Language Queries over Data Services](https://aclanthology.org/L12-1468/) (Quarteroni et al., LREC 2012)
ACL