@inproceedings{shi-etal-2012-service,
title = "Service Composition Scenarios for Task-Oriented Translation",
author = "Shi, Chunqi and
Lin, Donghui and
Ishida, Toru",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/808_Paper.pdf",
pages = "2951--2958",
abstract = "Due to instant availability and low cost, machine translation is becoming popular. Machine translation mediated communication plays a more and more important role in international collaboration. However, machine translators cannot guarantee high quality translation. In a multilingual communication task, many in-domain resources, for example domain dictionaries, are needed to promote translation quality. This raises the problem of how to help communication task designers provide higher quality translation systems, systems that can take advantage of various in-domain resources. The Language Grid, a service-oriented collective intelligent platform, allows in-domain resources to be wrapped into language services. For task-oriented translation, we propose service composition scenarios for the composition of different language services, where various in-domain resources are utilized effectively. We design the architecture, provide a script language as the interface for the task designer, which is easy for describing the composition scenario, and make a case study of a Japanese-English campus orientation task. Based on the case study, we analyze the increase in translation quality possible and the usage of in-domain resources. The results demonstrate a clear improvement in translation accuracy when the in-domain resources are used.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shi-etal-2012-service">
<titleInfo>
<title>Service Composition Scenarios for Task-Oriented Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chunqi</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Donghui</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toru</namePart>
<namePart type="family">Ishida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="given">Uğur</namePart>
<namePart type="family">Doğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Istanbul, Turkey</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Due to instant availability and low cost, machine translation is becoming popular. Machine translation mediated communication plays a more and more important role in international collaboration. However, machine translators cannot guarantee high quality translation. In a multilingual communication task, many in-domain resources, for example domain dictionaries, are needed to promote translation quality. This raises the problem of how to help communication task designers provide higher quality translation systems, systems that can take advantage of various in-domain resources. The Language Grid, a service-oriented collective intelligent platform, allows in-domain resources to be wrapped into language services. For task-oriented translation, we propose service composition scenarios for the composition of different language services, where various in-domain resources are utilized effectively. We design the architecture, provide a script language as the interface for the task designer, which is easy for describing the composition scenario, and make a case study of a Japanese-English campus orientation task. Based on the case study, we analyze the increase in translation quality possible and the usage of in-domain resources. The results demonstrate a clear improvement in translation accuracy when the in-domain resources are used.</abstract>
<identifier type="citekey">shi-etal-2012-service</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2012/pdf/808_Paper.pdf</url>
</location>
<part>
<date>2012-05</date>
<extent unit="page">
<start>2951</start>
<end>2958</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Service Composition Scenarios for Task-Oriented Translation
%A Shi, Chunqi
%A Lin, Donghui
%A Ishida, Toru
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Doğan, Mehmet Uğur
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)
%D 2012
%8 May
%I European Language Resources Association (ELRA)
%C Istanbul, Turkey
%F shi-etal-2012-service
%X Due to instant availability and low cost, machine translation is becoming popular. Machine translation mediated communication plays a more and more important role in international collaboration. However, machine translators cannot guarantee high quality translation. In a multilingual communication task, many in-domain resources, for example domain dictionaries, are needed to promote translation quality. This raises the problem of how to help communication task designers provide higher quality translation systems, systems that can take advantage of various in-domain resources. The Language Grid, a service-oriented collective intelligent platform, allows in-domain resources to be wrapped into language services. For task-oriented translation, we propose service composition scenarios for the composition of different language services, where various in-domain resources are utilized effectively. We design the architecture, provide a script language as the interface for the task designer, which is easy for describing the composition scenario, and make a case study of a Japanese-English campus orientation task. Based on the case study, we analyze the increase in translation quality possible and the usage of in-domain resources. The results demonstrate a clear improvement in translation accuracy when the in-domain resources are used.
%U http://www.lrec-conf.org/proceedings/lrec2012/pdf/808_Paper.pdf
%P 2951-2958
Markdown (Informal)
[Service Composition Scenarios for Task-Oriented Translation](http://www.lrec-conf.org/proceedings/lrec2012/pdf/808_Paper.pdf) (Shi et al., LREC 2012)
ACL