@inproceedings{corvey-etal-2012-foundations,
title = "Foundations of a Multilayer Annotation Framework for {T}witter Communications During Crisis Events",
author = "Corvey, William J. and
Verma, Sudha and
Vieweg, Sarah and
Palmer, Martha and
Martin, James H.",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/1008_Paper.pdf",
abstract = "In times of mass emergency, vast amounts of data are generated via computer-mediated communication (CMC) that are difficult to manually collect and organize into a coherent picture. Yet valuable information is broadcast, and can provide useful insight into time- and safety-critical situations if captured and analyzed efficiently and effectively. We describe a natural language processing component of the EPIC (Empowering the Public with Information in Crisis) Project infrastructure, designed to extract linguistic and behavioral information from tweet text to aid in the task of information integration. The system incorporates linguistic annotation, in the form of Named Entity Tagging, as well as behavioral annotations to capture tweets contributing to situational awareness and analyze the information type of the tweet content. We show classification results and describe future integration of these classifiers in the larger EPIC infrastructure.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="corvey-etal-2012-foundations">
<titleInfo>
<title>Foundations of a Multilayer Annotation Framework for Twitter Communications During Crisis Events</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Corvey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudha</namePart>
<namePart type="family">Verma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Vieweg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="given">H</namePart>
<namePart type="family">Martin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="given">Uğur</namePart>
<namePart type="family">Doğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Istanbul, Turkey</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In times of mass emergency, vast amounts of data are generated via computer-mediated communication (CMC) that are difficult to manually collect and organize into a coherent picture. Yet valuable information is broadcast, and can provide useful insight into time- and safety-critical situations if captured and analyzed efficiently and effectively. We describe a natural language processing component of the EPIC (Empowering the Public with Information in Crisis) Project infrastructure, designed to extract linguistic and behavioral information from tweet text to aid in the task of information integration. The system incorporates linguistic annotation, in the form of Named Entity Tagging, as well as behavioral annotations to capture tweets contributing to situational awareness and analyze the information type of the tweet content. We show classification results and describe future integration of these classifiers in the larger EPIC infrastructure.</abstract>
<identifier type="citekey">corvey-etal-2012-foundations</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2012/pdf/1008_Paper.pdf</url>
</location>
<part>
<date>2012-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Foundations of a Multilayer Annotation Framework for Twitter Communications During Crisis Events
%A Corvey, William J.
%A Verma, Sudha
%A Vieweg, Sarah
%A Palmer, Martha
%A Martin, James H.
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Doğan, Mehmet Uğur
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)
%D 2012
%8 May
%I European Language Resources Association (ELRA)
%C Istanbul, Turkey
%F corvey-etal-2012-foundations
%X In times of mass emergency, vast amounts of data are generated via computer-mediated communication (CMC) that are difficult to manually collect and organize into a coherent picture. Yet valuable information is broadcast, and can provide useful insight into time- and safety-critical situations if captured and analyzed efficiently and effectively. We describe a natural language processing component of the EPIC (Empowering the Public with Information in Crisis) Project infrastructure, designed to extract linguistic and behavioral information from tweet text to aid in the task of information integration. The system incorporates linguistic annotation, in the form of Named Entity Tagging, as well as behavioral annotations to capture tweets contributing to situational awareness and analyze the information type of the tweet content. We show classification results and describe future integration of these classifiers in the larger EPIC infrastructure.
%U http://www.lrec-conf.org/proceedings/lrec2012/pdf/1008_Paper.pdf
Markdown (Informal)
[Foundations of a Multilayer Annotation Framework for Twitter Communications During Crisis Events](http://www.lrec-conf.org/proceedings/lrec2012/pdf/1008_Paper.pdf) (Corvey et al., LREC 2012)
ACL