@inproceedings{buttery-caines-2012-reclassifying,
title = "Reclassifying subcategorization frames for experimental analysis and stimulus generation",
author = "Buttery, Paula and
Caines, Andrew",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}`12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L12-1634/",
pages = "1694--1698",
abstract = "Researchers in the fields of psycholinguistics and neurolinguistics increasingly test their experimental hypotheses against probabilistic models of language. VALEX (Korhonen et al., 2006) is a large-scale verb lexicon that specifies verb usage as probability distributions over a set of 163 verb SUBCATEGORIZATION FRAMES (SCFs). VALEX has proved to be a popular computational linguistic resource and may also be used by psycho- and neurolinguists for experimental analysis and stimulus generation. However, a probabilistic model based upon a set of 163 SCFs often proves too fine grained for experimenters in these fields. Our goal is to simplify the classification by grouping the frames into genera{\textemdash}explainable clusters that may be used as experimental parameters. We adopted two methods for reclassification. One was a manual linguistic approach derived from verb argumentation and clause features; the other was an automatic, computational approach driven from a graphical representation of SCFs. The premise was not only to compare the results of two quite different methods for our own interest, but also to enable other researchers to choose whichever reclassification better suited their purpose (one being grounded purely in theoretical linguistics and the other in practical language engineering). The various classifications are available as an online resource to researchers."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="buttery-caines-2012-reclassifying">
<titleInfo>
<title>Reclassifying subcategorization frames for experimental analysis and stimulus generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paula</namePart>
<namePart type="family">Buttery</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Caines</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC‘12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="given">Uğur</namePart>
<namePart type="family">Doğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Istanbul, Turkey</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Researchers in the fields of psycholinguistics and neurolinguistics increasingly test their experimental hypotheses against probabilistic models of language. VALEX (Korhonen et al., 2006) is a large-scale verb lexicon that specifies verb usage as probability distributions over a set of 163 verb SUBCATEGORIZATION FRAMES (SCFs). VALEX has proved to be a popular computational linguistic resource and may also be used by psycho- and neurolinguists for experimental analysis and stimulus generation. However, a probabilistic model based upon a set of 163 SCFs often proves too fine grained for experimenters in these fields. Our goal is to simplify the classification by grouping the frames into genera—explainable clusters that may be used as experimental parameters. We adopted two methods for reclassification. One was a manual linguistic approach derived from verb argumentation and clause features; the other was an automatic, computational approach driven from a graphical representation of SCFs. The premise was not only to compare the results of two quite different methods for our own interest, but also to enable other researchers to choose whichever reclassification better suited their purpose (one being grounded purely in theoretical linguistics and the other in practical language engineering). The various classifications are available as an online resource to researchers.</abstract>
<identifier type="citekey">buttery-caines-2012-reclassifying</identifier>
<location>
<url>https://aclanthology.org/L12-1634/</url>
</location>
<part>
<date>2012-05</date>
<extent unit="page">
<start>1694</start>
<end>1698</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reclassifying subcategorization frames for experimental analysis and stimulus generation
%A Buttery, Paula
%A Caines, Andrew
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Doğan, Mehmet Uğur
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC‘12)
%D 2012
%8 May
%I European Language Resources Association (ELRA)
%C Istanbul, Turkey
%F buttery-caines-2012-reclassifying
%X Researchers in the fields of psycholinguistics and neurolinguistics increasingly test their experimental hypotheses against probabilistic models of language. VALEX (Korhonen et al., 2006) is a large-scale verb lexicon that specifies verb usage as probability distributions over a set of 163 verb SUBCATEGORIZATION FRAMES (SCFs). VALEX has proved to be a popular computational linguistic resource and may also be used by psycho- and neurolinguists for experimental analysis and stimulus generation. However, a probabilistic model based upon a set of 163 SCFs often proves too fine grained for experimenters in these fields. Our goal is to simplify the classification by grouping the frames into genera—explainable clusters that may be used as experimental parameters. We adopted two methods for reclassification. One was a manual linguistic approach derived from verb argumentation and clause features; the other was an automatic, computational approach driven from a graphical representation of SCFs. The premise was not only to compare the results of two quite different methods for our own interest, but also to enable other researchers to choose whichever reclassification better suited their purpose (one being grounded purely in theoretical linguistics and the other in practical language engineering). The various classifications are available as an online resource to researchers.
%U https://aclanthology.org/L12-1634/
%P 1694-1698
Markdown (Informal)
[Reclassifying subcategorization frames for experimental analysis and stimulus generation](https://aclanthology.org/L12-1634/) (Buttery & Caines, LREC 2012)
ACL