@inproceedings{barker-gaizauskas-2012-assessing,
title = "Assessing the Comparability of News Texts",
author = "Barker, Emma and
Gaizauskas, Robert",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}`12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L12-1637/",
pages = "3996--4003",
abstract = "Comparable news texts are frequently proposed as a potential source of alignable subsentential fragments for use in statistical machine translation systems. But can we assess just how potentially useful they will be? In this paper we first discuss a scheme for classifying news text pairs according to the degree of relatedness of the events they report and investigate how robust this classification scheme is via a multi-lingual annotation exercise. We then propose an annotation methodology, similar to that used in summarization evaluation, to allow us to identify and quantify shared content at the subsentential level in news text pairs and report a preliminary exercise to assess this method. We conclude by discussing how this works fits into a broader programme of assessing the potential utility of comparable news texts for extracting paraphrases/translational equivalents for use in language processing applications."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barker-gaizauskas-2012-assessing">
<titleInfo>
<title>Assessing the Comparability of News Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emma</namePart>
<namePart type="family">Barker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Gaizauskas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC‘12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="given">Uğur</namePart>
<namePart type="family">Doğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Istanbul, Turkey</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Comparable news texts are frequently proposed as a potential source of alignable subsentential fragments for use in statistical machine translation systems. But can we assess just how potentially useful they will be? In this paper we first discuss a scheme for classifying news text pairs according to the degree of relatedness of the events they report and investigate how robust this classification scheme is via a multi-lingual annotation exercise. We then propose an annotation methodology, similar to that used in summarization evaluation, to allow us to identify and quantify shared content at the subsentential level in news text pairs and report a preliminary exercise to assess this method. We conclude by discussing how this works fits into a broader programme of assessing the potential utility of comparable news texts for extracting paraphrases/translational equivalents for use in language processing applications.</abstract>
<identifier type="citekey">barker-gaizauskas-2012-assessing</identifier>
<location>
<url>https://aclanthology.org/L12-1637/</url>
</location>
<part>
<date>2012-05</date>
<extent unit="page">
<start>3996</start>
<end>4003</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assessing the Comparability of News Texts
%A Barker, Emma
%A Gaizauskas, Robert
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Doğan, Mehmet Uğur
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC‘12)
%D 2012
%8 May
%I European Language Resources Association (ELRA)
%C Istanbul, Turkey
%F barker-gaizauskas-2012-assessing
%X Comparable news texts are frequently proposed as a potential source of alignable subsentential fragments for use in statistical machine translation systems. But can we assess just how potentially useful they will be? In this paper we first discuss a scheme for classifying news text pairs according to the degree of relatedness of the events they report and investigate how robust this classification scheme is via a multi-lingual annotation exercise. We then propose an annotation methodology, similar to that used in summarization evaluation, to allow us to identify and quantify shared content at the subsentential level in news text pairs and report a preliminary exercise to assess this method. We conclude by discussing how this works fits into a broader programme of assessing the potential utility of comparable news texts for extracting paraphrases/translational equivalents for use in language processing applications.
%U https://aclanthology.org/L12-1637/
%P 3996-4003
Markdown (Informal)
[Assessing the Comparability of News Texts](https://aclanthology.org/L12-1637/) (Barker & Gaizauskas, LREC 2012)
ACL
- Emma Barker and Robert Gaizauskas. 2012. Assessing the Comparability of News Texts. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 3996–4003, Istanbul, Turkey. European Language Resources Association (ELRA).