@inproceedings{barreiro-etal-2014-linguistic,
    title = "Linguistic Evaluation of Support Verb Constructions by {O}pen{L}ogos and {G}oogle {T}ranslate",
    author = "Barreiro, Anabela  and
      Monti, Johanna  and
      Orliac, Brigitte  and
      Preu{\ss}, Susanne  and
      Arrieta, Kutz  and
      Ling, Wang  and
      Batista, Fernando  and
      Trancoso, Isabel",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Loftsson, Hrafn  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
    month = may,
    year = "2014",
    address = "Reykjavik, Iceland",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://aclanthology.org/L14-1176/",
    pages = "35--40",
    abstract = "This paper presents a systematic human evaluation of translations of English support verb constructions produced by a rule-based machine translation (RBMT) system (OpenLogos) and a statistical machine translation (SMT) system (Google Translate) for five languages: French, German, Italian, Portuguese and Spanish. We classify support verb constructions by means of their syntactic structure and semantic behavior and present a qualitative analysis of their translation errors. The study aims to verify how machine translation (MT) systems translate fine-grained linguistic phenomena, and how well-equipped they are to produce high-quality translation. Another goal of the linguistically motivated quality analysis of SVC raw output is to reinforce the need for better system hybridization, which leverages the strengths of RBMT to the benefit of SMT, especially in improving the translation of multiword units. Taking multiword units into account, we propose an effective method to achieve MT hybridization based on the integration of semantico-syntactic knowledge into SMT."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barreiro-etal-2014-linguistic">
    <titleInfo>
        <title>Linguistic Evaluation of Support Verb Constructions by OpenLogos and Google Translate</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Anabela</namePart>
        <namePart type="family">Barreiro</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Johanna</namePart>
        <namePart type="family">Monti</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Brigitte</namePart>
        <namePart type="family">Orliac</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Susanne</namePart>
        <namePart type="family">Preuß</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kutz</namePart>
        <namePart type="family">Arrieta</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Wang</namePart>
        <namePart type="family">Ling</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Fernando</namePart>
        <namePart type="family">Batista</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Isabel</namePart>
        <namePart type="family">Trancoso</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2014-05</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Nicoletta</namePart>
            <namePart type="family">Calzolari</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Khalid</namePart>
            <namePart type="family">Choukri</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Thierry</namePart>
            <namePart type="family">Declerck</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Hrafn</namePart>
            <namePart type="family">Loftsson</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Bente</namePart>
            <namePart type="family">Maegaard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Joseph</namePart>
            <namePart type="family">Mariani</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Asuncion</namePart>
            <namePart type="family">Moreno</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jan</namePart>
            <namePart type="family">Odijk</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Stelios</namePart>
            <namePart type="family">Piperidis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>European Language Resources Association (ELRA)</publisher>
            <place>
                <placeTerm type="text">Reykjavik, Iceland</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper presents a systematic human evaluation of translations of English support verb constructions produced by a rule-based machine translation (RBMT) system (OpenLogos) and a statistical machine translation (SMT) system (Google Translate) for five languages: French, German, Italian, Portuguese and Spanish. We classify support verb constructions by means of their syntactic structure and semantic behavior and present a qualitative analysis of their translation errors. The study aims to verify how machine translation (MT) systems translate fine-grained linguistic phenomena, and how well-equipped they are to produce high-quality translation. Another goal of the linguistically motivated quality analysis of SVC raw output is to reinforce the need for better system hybridization, which leverages the strengths of RBMT to the benefit of SMT, especially in improving the translation of multiword units. Taking multiword units into account, we propose an effective method to achieve MT hybridization based on the integration of semantico-syntactic knowledge into SMT.</abstract>
    <identifier type="citekey">barreiro-etal-2014-linguistic</identifier>
    <location>
        <url>https://aclanthology.org/L14-1176/</url>
    </location>
    <part>
        <date>2014-05</date>
        <extent unit="page">
            <start>35</start>
            <end>40</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Linguistic Evaluation of Support Verb Constructions by OpenLogos and Google Translate
%A Barreiro, Anabela
%A Monti, Johanna
%A Orliac, Brigitte
%A Preuß, Susanne
%A Arrieta, Kutz
%A Ling, Wang
%A Batista, Fernando
%A Trancoso, Isabel
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Loftsson, Hrafn
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)
%D 2014
%8 May
%I European Language Resources Association (ELRA)
%C Reykjavik, Iceland
%F barreiro-etal-2014-linguistic
%X This paper presents a systematic human evaluation of translations of English support verb constructions produced by a rule-based machine translation (RBMT) system (OpenLogos) and a statistical machine translation (SMT) system (Google Translate) for five languages: French, German, Italian, Portuguese and Spanish. We classify support verb constructions by means of their syntactic structure and semantic behavior and present a qualitative analysis of their translation errors. The study aims to verify how machine translation (MT) systems translate fine-grained linguistic phenomena, and how well-equipped they are to produce high-quality translation. Another goal of the linguistically motivated quality analysis of SVC raw output is to reinforce the need for better system hybridization, which leverages the strengths of RBMT to the benefit of SMT, especially in improving the translation of multiword units. Taking multiword units into account, we propose an effective method to achieve MT hybridization based on the integration of semantico-syntactic knowledge into SMT.
%U https://aclanthology.org/L14-1176/
%P 35-40
Markdown (Informal)
[Linguistic Evaluation of Support Verb Constructions by OpenLogos and Google Translate](https://aclanthology.org/L14-1176/) (Barreiro et al., LREC 2014)
ACL
- Anabela Barreiro, Johanna Monti, Brigitte Orliac, Susanne Preuß, Kutz Arrieta, Wang Ling, Fernando Batista, and Isabel Trancoso. 2014. Linguistic Evaluation of Support Verb Constructions by OpenLogos and Google Translate. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 35–40, Reykjavik, Iceland. European Language Resources Association (ELRA).