@inproceedings{mairidan-etal-2014-bilingual,
title = "Bilingual Dictionary Induction as an Optimization Problem",
author = "Mairidan, Wushouer and
Ishida, Toru and
Lin, Donghui and
Hirayama, Katsutoshi",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Loftsson, Hrafn and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
month = may,
year = "2014",
address = "Reykjavik, Iceland",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/417_Paper.pdf",
pages = "2122--2129",
abstract = "Bilingual dictionaries are vital in many areas of natural language processing, but such resources are rarely available for lower-density language pairs, especially for those that are closely related. Pivot-based induction consists of using a third language to bridge a language pair. As an approach to create new dictionaries, it can generate wrong translations due to polysemy and ambiguous words. In this paper we propose a constraint approach to pivot-based dictionary induction for the case of two closely related languages. In order to take into account the word senses, we use an approach based on semantic distances, in which possibly missing translations are considered, and instance of induction is encoded as an optimization problem to generate new dictionary. Evaluations show that the proposal achieves 83.7{\%} accuracy and approximately 70.5{\%} recall, thus outperforming the baseline pivot-based method.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mairidan-etal-2014-bilingual">
<titleInfo>
<title>Bilingual Dictionary Induction as an Optimization Problem</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wushouer</namePart>
<namePart type="family">Mairidan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toru</namePart>
<namePart type="family">Ishida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Donghui</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katsutoshi</namePart>
<namePart type="family">Hirayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hrafn</namePart>
<namePart type="family">Loftsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Reykjavik, Iceland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Bilingual dictionaries are vital in many areas of natural language processing, but such resources are rarely available for lower-density language pairs, especially for those that are closely related. Pivot-based induction consists of using a third language to bridge a language pair. As an approach to create new dictionaries, it can generate wrong translations due to polysemy and ambiguous words. In this paper we propose a constraint approach to pivot-based dictionary induction for the case of two closely related languages. In order to take into account the word senses, we use an approach based on semantic distances, in which possibly missing translations are considered, and instance of induction is encoded as an optimization problem to generate new dictionary. Evaluations show that the proposal achieves 83.7% accuracy and approximately 70.5% recall, thus outperforming the baseline pivot-based method.</abstract>
<identifier type="citekey">mairidan-etal-2014-bilingual</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2014/pdf/417_Paper.pdf</url>
</location>
<part>
<date>2014-05</date>
<extent unit="page">
<start>2122</start>
<end>2129</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bilingual Dictionary Induction as an Optimization Problem
%A Mairidan, Wushouer
%A Ishida, Toru
%A Lin, Donghui
%A Hirayama, Katsutoshi
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Loftsson, Hrafn
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)
%D 2014
%8 May
%I European Language Resources Association (ELRA)
%C Reykjavik, Iceland
%F mairidan-etal-2014-bilingual
%X Bilingual dictionaries are vital in many areas of natural language processing, but such resources are rarely available for lower-density language pairs, especially for those that are closely related. Pivot-based induction consists of using a third language to bridge a language pair. As an approach to create new dictionaries, it can generate wrong translations due to polysemy and ambiguous words. In this paper we propose a constraint approach to pivot-based dictionary induction for the case of two closely related languages. In order to take into account the word senses, we use an approach based on semantic distances, in which possibly missing translations are considered, and instance of induction is encoded as an optimization problem to generate new dictionary. Evaluations show that the proposal achieves 83.7% accuracy and approximately 70.5% recall, thus outperforming the baseline pivot-based method.
%U http://www.lrec-conf.org/proceedings/lrec2014/pdf/417_Paper.pdf
%P 2122-2129
Markdown (Informal)
[Bilingual Dictionary Induction as an Optimization Problem](http://www.lrec-conf.org/proceedings/lrec2014/pdf/417_Paper.pdf) (Mairidan et al., LREC 2014)
ACL
- Wushouer Mairidan, Toru Ishida, Donghui Lin, and Katsutoshi Hirayama. 2014. Bilingual Dictionary Induction as an Optimization Problem. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 2122–2129, Reykjavik, Iceland. European Language Resources Association (ELRA).