@inproceedings{orr-etal-2014-semi,
title = "Semi-automatic annotation of the {UCU} accents speech corpus",
author = "Orr, Rosemary and
Huijbregts, Marijn and
van Beek, Roeland and
Teunissen, Lisa and
Backhouse, Kate and
van Leeuwen, David",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Loftsson, Hrafn and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}`14)",
month = may,
year = "2014",
address = "Reykjavik, Iceland",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L14-1424/",
pages = "1483--1487",
abstract = "Annotation and labeling of speech tasks in large multitask speech corpora is a necessary part of preparing a corpus for distribution. We address three approaches to annotation and labeling: manual, semi automatic and automatic procedures for labeling the UCU Accent Project speech data, a multilingual multitask longitudinal speech corpus. Accuracy and minimal time investment are the priorities in assessing the efficacy of each procedure. While manual labeling based on aural and visual input should produce the most accurate results, this approach is error-prone because of its repetitive nature. A semi automatic event detection system requiring manual rejection of false alarms and location and labeling of misses provided the best results. A fully automatic system could not be applied to entire speech recordings because of the variety of tasks and genres. However, it could be used to annotate separate sentences within a specific task. Acoustic confidence measures can correctly detect sentences that do not match the text with an EER of 3.3{\%}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="orr-etal-2014-semi">
<titleInfo>
<title>Semi-automatic annotation of the UCU accents speech corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rosemary</namePart>
<namePart type="family">Orr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marijn</namePart>
<namePart type="family">Huijbregts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roeland</namePart>
<namePart type="family">van Beek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lisa</namePart>
<namePart type="family">Teunissen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Backhouse</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">van Leeuwen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC‘14)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hrafn</namePart>
<namePart type="family">Loftsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Reykjavik, Iceland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Annotation and labeling of speech tasks in large multitask speech corpora is a necessary part of preparing a corpus for distribution. We address three approaches to annotation and labeling: manual, semi automatic and automatic procedures for labeling the UCU Accent Project speech data, a multilingual multitask longitudinal speech corpus. Accuracy and minimal time investment are the priorities in assessing the efficacy of each procedure. While manual labeling based on aural and visual input should produce the most accurate results, this approach is error-prone because of its repetitive nature. A semi automatic event detection system requiring manual rejection of false alarms and location and labeling of misses provided the best results. A fully automatic system could not be applied to entire speech recordings because of the variety of tasks and genres. However, it could be used to annotate separate sentences within a specific task. Acoustic confidence measures can correctly detect sentences that do not match the text with an EER of 3.3%</abstract>
<identifier type="citekey">orr-etal-2014-semi</identifier>
<location>
<url>https://aclanthology.org/L14-1424/</url>
</location>
<part>
<date>2014-05</date>
<extent unit="page">
<start>1483</start>
<end>1487</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semi-automatic annotation of the UCU accents speech corpus
%A Orr, Rosemary
%A Huijbregts, Marijn
%A van Beek, Roeland
%A Teunissen, Lisa
%A Backhouse, Kate
%A van Leeuwen, David
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Loftsson, Hrafn
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC‘14)
%D 2014
%8 May
%I European Language Resources Association (ELRA)
%C Reykjavik, Iceland
%F orr-etal-2014-semi
%X Annotation and labeling of speech tasks in large multitask speech corpora is a necessary part of preparing a corpus for distribution. We address three approaches to annotation and labeling: manual, semi automatic and automatic procedures for labeling the UCU Accent Project speech data, a multilingual multitask longitudinal speech corpus. Accuracy and minimal time investment are the priorities in assessing the efficacy of each procedure. While manual labeling based on aural and visual input should produce the most accurate results, this approach is error-prone because of its repetitive nature. A semi automatic event detection system requiring manual rejection of false alarms and location and labeling of misses provided the best results. A fully automatic system could not be applied to entire speech recordings because of the variety of tasks and genres. However, it could be used to annotate separate sentences within a specific task. Acoustic confidence measures can correctly detect sentences that do not match the text with an EER of 3.3%
%U https://aclanthology.org/L14-1424/
%P 1483-1487
Markdown (Informal)
[Semi-automatic annotation of the UCU accents speech corpus](https://aclanthology.org/L14-1424/) (Orr et al., LREC 2014)
ACL
- Rosemary Orr, Marijn Huijbregts, Roeland van Beek, Lisa Teunissen, Kate Backhouse, and David van Leeuwen. 2014. Semi-automatic annotation of the UCU accents speech corpus. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 1483–1487, Reykjavik, Iceland. European Language Resources Association (ELRA).