@inproceedings{taba-caseli-2014-automatic,
title = "Automatic semantic relation extraction from {P}ortuguese texts",
author = "Taba, Leonardo Sameshima and
Caseli, Helena",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Loftsson, Hrafn and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
month = may,
year = "2014",
address = "Reykjavik, Iceland",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/522_Paper.pdf",
pages = "2739--2746",
abstract = "Nowadays we are facing a growing demand for semantic knowledge in computational applications, particularly in Natural Language Processing (NLP). However, there aren{'}t sufficient human resources to produce that knowledge at the same rate of its demand. Considering the Portuguese language, which has few resources in the semantic area, the situation is even more alarming. Aiming to solve that problem, this work investigates how some semantic relations can be automatically extracted from Portuguese texts. The two main approaches investigated here are based on (i) textual patterns and (ii) machine learning algorithms. Thus, this work investigates how and to which extent these two approaches can be applied to the automatic extraction of seven binary semantic relations (is-a, part-of, location-of, effect-of, property-of, made-of and used-for) in Portuguese texts. The results indicate that machine learning, in particular Support Vector Machines, is a promising technique for the task, although textual patterns presented better results for the used-for relation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="taba-caseli-2014-automatic">
<titleInfo>
<title>Automatic semantic relation extraction from Portuguese texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leonardo</namePart>
<namePart type="given">Sameshima</namePart>
<namePart type="family">Taba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Caseli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hrafn</namePart>
<namePart type="family">Loftsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Reykjavik, Iceland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Nowadays we are facing a growing demand for semantic knowledge in computational applications, particularly in Natural Language Processing (NLP). However, there aren’t sufficient human resources to produce that knowledge at the same rate of its demand. Considering the Portuguese language, which has few resources in the semantic area, the situation is even more alarming. Aiming to solve that problem, this work investigates how some semantic relations can be automatically extracted from Portuguese texts. The two main approaches investigated here are based on (i) textual patterns and (ii) machine learning algorithms. Thus, this work investigates how and to which extent these two approaches can be applied to the automatic extraction of seven binary semantic relations (is-a, part-of, location-of, effect-of, property-of, made-of and used-for) in Portuguese texts. The results indicate that machine learning, in particular Support Vector Machines, is a promising technique for the task, although textual patterns presented better results for the used-for relation.</abstract>
<identifier type="citekey">taba-caseli-2014-automatic</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2014/pdf/522_Paper.pdf</url>
</location>
<part>
<date>2014-05</date>
<extent unit="page">
<start>2739</start>
<end>2746</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic semantic relation extraction from Portuguese texts
%A Taba, Leonardo Sameshima
%A Caseli, Helena
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Loftsson, Hrafn
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)
%D 2014
%8 May
%I European Language Resources Association (ELRA)
%C Reykjavik, Iceland
%F taba-caseli-2014-automatic
%X Nowadays we are facing a growing demand for semantic knowledge in computational applications, particularly in Natural Language Processing (NLP). However, there aren’t sufficient human resources to produce that knowledge at the same rate of its demand. Considering the Portuguese language, which has few resources in the semantic area, the situation is even more alarming. Aiming to solve that problem, this work investigates how some semantic relations can be automatically extracted from Portuguese texts. The two main approaches investigated here are based on (i) textual patterns and (ii) machine learning algorithms. Thus, this work investigates how and to which extent these two approaches can be applied to the automatic extraction of seven binary semantic relations (is-a, part-of, location-of, effect-of, property-of, made-of and used-for) in Portuguese texts. The results indicate that machine learning, in particular Support Vector Machines, is a promising technique for the task, although textual patterns presented better results for the used-for relation.
%U http://www.lrec-conf.org/proceedings/lrec2014/pdf/522_Paper.pdf
%P 2739-2746
Markdown (Informal)
[Automatic semantic relation extraction from Portuguese texts](http://www.lrec-conf.org/proceedings/lrec2014/pdf/522_Paper.pdf) (Taba & Caseli, LREC 2014)
ACL