@inproceedings{garcia-fernandez-etal-2014-evaluation,
title = "Evaluation of different strategies for domain adaptation in opinion mining",
author = "Garcia-Fernandez, Anne and
Ferret, Olivier and
Dinarelli, Marco",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Loftsson, Hrafn and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
month = may,
year = "2014",
address = "Reykjavik, Iceland",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/617_Paper.pdf",
pages = "3877--3880",
abstract = "The work presented in this article takes place in the field of opinion mining and aims more particularly at finding the polarity of a text by relying on machine learning methods. In this context, it focuses on studying various strategies for adapting a statistical classifier to a new domain when training data only exist for one or several other domains. This study shows more precisely that a self-training procedure consisting in enlarging the initial training corpus with texts from the target domain that were reliably classified by the classifier is the most successful and stable strategy for the tested domains. Moreover, this strategy gets better results in most cases than (Blitzer et al., 2007){'}s method on the same evaluation corpus while it is more simple.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="garcia-fernandez-etal-2014-evaluation">
<titleInfo>
<title>Evaluation of different strategies for domain adaptation in opinion mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Garcia-Fernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Ferret</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Dinarelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hrafn</namePart>
<namePart type="family">Loftsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Reykjavik, Iceland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The work presented in this article takes place in the field of opinion mining and aims more particularly at finding the polarity of a text by relying on machine learning methods. In this context, it focuses on studying various strategies for adapting a statistical classifier to a new domain when training data only exist for one or several other domains. This study shows more precisely that a self-training procedure consisting in enlarging the initial training corpus with texts from the target domain that were reliably classified by the classifier is the most successful and stable strategy for the tested domains. Moreover, this strategy gets better results in most cases than (Blitzer et al., 2007)’s method on the same evaluation corpus while it is more simple.</abstract>
<identifier type="citekey">garcia-fernandez-etal-2014-evaluation</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2014/pdf/617_Paper.pdf</url>
</location>
<part>
<date>2014-05</date>
<extent unit="page">
<start>3877</start>
<end>3880</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluation of different strategies for domain adaptation in opinion mining
%A Garcia-Fernandez, Anne
%A Ferret, Olivier
%A Dinarelli, Marco
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Loftsson, Hrafn
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)
%D 2014
%8 May
%I European Language Resources Association (ELRA)
%C Reykjavik, Iceland
%F garcia-fernandez-etal-2014-evaluation
%X The work presented in this article takes place in the field of opinion mining and aims more particularly at finding the polarity of a text by relying on machine learning methods. In this context, it focuses on studying various strategies for adapting a statistical classifier to a new domain when training data only exist for one or several other domains. This study shows more precisely that a self-training procedure consisting in enlarging the initial training corpus with texts from the target domain that were reliably classified by the classifier is the most successful and stable strategy for the tested domains. Moreover, this strategy gets better results in most cases than (Blitzer et al., 2007)’s method on the same evaluation corpus while it is more simple.
%U http://www.lrec-conf.org/proceedings/lrec2014/pdf/617_Paper.pdf
%P 3877-3880
Markdown (Informal)
[Evaluation of different strategies for domain adaptation in opinion mining](http://www.lrec-conf.org/proceedings/lrec2014/pdf/617_Paper.pdf) (Garcia-Fernandez et al., LREC 2014)
ACL