@inproceedings{thurmair-2014-conceptual,
title = "Conceptual transfer: Using local classifiers for transfer selection",
author = "Thurmair, Gregor",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Loftsson, Hrafn and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
month = may,
year = "2014",
address = "Reykjavik, Iceland",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/661_Paper.pdf",
pages = "4387--4393",
abstract = "A key challenge for Machine Translation is transfer selection, i.e. to find the right translation for a given word from a set of alternatives (1:n). This problem becomes the more important the larger the dictionary is, as the number of alternatives increases. The contribution presents a novel approach for transfer selection, called conceptual transfer, where selection is done using classifiers based on the conceptual context of a translation candidate on the source language side. Such classifiers are built automatically by parallel corpus analysis: Creating subcorpora for each translation of a 1:n package, and identifying correlating concepts in these subcorpora as features of the classifier. The resulting resource can easily be linked to transfer components of MT systems as it does not depend on internal analysis structures. Tests show that conceptual transfer outperforms the selection techniques currently used in operational MT systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="thurmair-2014-conceptual">
<titleInfo>
<title>Conceptual transfer: Using local classifiers for transfer selection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gregor</namePart>
<namePart type="family">Thurmair</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hrafn</namePart>
<namePart type="family">Loftsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Reykjavik, Iceland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A key challenge for Machine Translation is transfer selection, i.e. to find the right translation for a given word from a set of alternatives (1:n). This problem becomes the more important the larger the dictionary is, as the number of alternatives increases. The contribution presents a novel approach for transfer selection, called conceptual transfer, where selection is done using classifiers based on the conceptual context of a translation candidate on the source language side. Such classifiers are built automatically by parallel corpus analysis: Creating subcorpora for each translation of a 1:n package, and identifying correlating concepts in these subcorpora as features of the classifier. The resulting resource can easily be linked to transfer components of MT systems as it does not depend on internal analysis structures. Tests show that conceptual transfer outperforms the selection techniques currently used in operational MT systems.</abstract>
<identifier type="citekey">thurmair-2014-conceptual</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2014/pdf/661_Paper.pdf</url>
</location>
<part>
<date>2014-05</date>
<extent unit="page">
<start>4387</start>
<end>4393</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conceptual transfer: Using local classifiers for transfer selection
%A Thurmair, Gregor
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Loftsson, Hrafn
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)
%D 2014
%8 May
%I European Language Resources Association (ELRA)
%C Reykjavik, Iceland
%F thurmair-2014-conceptual
%X A key challenge for Machine Translation is transfer selection, i.e. to find the right translation for a given word from a set of alternatives (1:n). This problem becomes the more important the larger the dictionary is, as the number of alternatives increases. The contribution presents a novel approach for transfer selection, called conceptual transfer, where selection is done using classifiers based on the conceptual context of a translation candidate on the source language side. Such classifiers are built automatically by parallel corpus analysis: Creating subcorpora for each translation of a 1:n package, and identifying correlating concepts in these subcorpora as features of the classifier. The resulting resource can easily be linked to transfer components of MT systems as it does not depend on internal analysis structures. Tests show that conceptual transfer outperforms the selection techniques currently used in operational MT systems.
%U http://www.lrec-conf.org/proceedings/lrec2014/pdf/661_Paper.pdf
%P 4387-4393
Markdown (Informal)
[Conceptual transfer: Using local classifiers for transfer selection](http://www.lrec-conf.org/proceedings/lrec2014/pdf/661_Paper.pdf) (Thurmair, LREC 2014)
ACL