TagNText: A parallel corpus for the induction of resource-specific non-taxonomical relations from tagged images

Theodosia Togia, Ann Copestake


Abstract
When producing textual descriptions, humans express propositions regarding an object; but what do they express when annotating a document with simple tags? To answer this question, we have studied what users of tagging systems would have said if they were to describe a resource with fully fledged text. In particular, our work attempts to answer the following questions: if users were to use full descriptions, would their current tags be words present in these hypothetical sentences? If yes, what kind of language would connect these words? Such questions, although central to the problem of extracting binary relations between tags, have been sidestepped in the existing literature, which has focused on a small subset of possible inter-tag relations, namely hierarchical ones (e.g. “car” –is-a– “vehicle”), as opposed to non-taxonomical relations (e.g. “woman” –wears– “hat”). TagNText is the first attempt to construct a parallel corpus of tags and textual descriptions with respect to particular resources. The corpus provides enough data for the researcher to gain an insight into the nature of underlying relations, as well as the tools and methodology for constructing larger-scale parallel corpora that can aid non-taxonomical relation extraction.
Anthology ID:
L14-1578
Volume:
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)
Month:
May
Year:
2014
Address:
Reykjavik, Iceland
Editors:
Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, Stelios Piperidis
Venue:
LREC
SIG:
Publisher:
European Language Resources Association (ELRA)
Note:
Pages:
3448–3455
Language:
URL:
http://www.lrec-conf.org/proceedings/lrec2014/pdf/738_Paper.pdf
DOI:
Bibkey:
Cite (ACL):
Theodosia Togia and Ann Copestake. 2014. TagNText: A parallel corpus for the induction of resource-specific non-taxonomical relations from tagged images. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 3448–3455, Reykjavik, Iceland. European Language Resources Association (ELRA).
Cite (Informal):
TagNText: A parallel corpus for the induction of resource-specific non-taxonomical relations from tagged images (Togia & Copestake, LREC 2014)
Copy Citation:
PDF:
http://www.lrec-conf.org/proceedings/lrec2014/pdf/738_Paper.pdf