@inproceedings{amanova-etal-2016-creating,
title = "Creating Annotated Dialogue Resources: Cross-domain Dialogue Act Classification",
author = "Amanova, Dilafruz and
Petukhova, Volha and
Klakow, Dietrich",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1017",
pages = "111--117",
abstract = "This paper describes a method to automatically create dialogue resources annotated with dialogue act information by reusing existing dialogue corpora. Numerous dialogue corpora are available for research purposes and many of them are annotated with dialogue act information that captures the intentions encoded in user utterances. Annotated dialogue resources, however, differ in various respects: data collection settings and modalities used, dialogue task domains and scenarios (if any) underlying the collection, number and roles of dialogue participants involved and dialogue act annotation schemes applied. The presented study encompasses three phases of data-driven investigation. We, first, assess the importance of various types of features and their combinations for effective cross-domain dialogue act classification. Second, we establish the best predictive model comparing various cross-corpora training settings. Finally, we specify models adaptation procedures and explore late fusion approaches to optimize the overall classification decision taking process. The proposed methodology accounts for empirically motivated and technically sound classification procedures that may reduce annotation and training costs significantly.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="amanova-etal-2016-creating">
<titleInfo>
<title>Creating Annotated Dialogue Resources: Cross-domain Dialogue Act Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dilafruz</namePart>
<namePart type="family">Amanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Volha</namePart>
<namePart type="family">Petukhova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dietrich</namePart>
<namePart type="family">Klakow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a method to automatically create dialogue resources annotated with dialogue act information by reusing existing dialogue corpora. Numerous dialogue corpora are available for research purposes and many of them are annotated with dialogue act information that captures the intentions encoded in user utterances. Annotated dialogue resources, however, differ in various respects: data collection settings and modalities used, dialogue task domains and scenarios (if any) underlying the collection, number and roles of dialogue participants involved and dialogue act annotation schemes applied. The presented study encompasses three phases of data-driven investigation. We, first, assess the importance of various types of features and their combinations for effective cross-domain dialogue act classification. Second, we establish the best predictive model comparing various cross-corpora training settings. Finally, we specify models adaptation procedures and explore late fusion approaches to optimize the overall classification decision taking process. The proposed methodology accounts for empirically motivated and technically sound classification procedures that may reduce annotation and training costs significantly.</abstract>
<identifier type="citekey">amanova-etal-2016-creating</identifier>
<location>
<url>https://aclanthology.org/L16-1017</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>111</start>
<end>117</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Creating Annotated Dialogue Resources: Cross-domain Dialogue Act Classification
%A Amanova, Dilafruz
%A Petukhova, Volha
%A Klakow, Dietrich
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F amanova-etal-2016-creating
%X This paper describes a method to automatically create dialogue resources annotated with dialogue act information by reusing existing dialogue corpora. Numerous dialogue corpora are available for research purposes and many of them are annotated with dialogue act information that captures the intentions encoded in user utterances. Annotated dialogue resources, however, differ in various respects: data collection settings and modalities used, dialogue task domains and scenarios (if any) underlying the collection, number and roles of dialogue participants involved and dialogue act annotation schemes applied. The presented study encompasses three phases of data-driven investigation. We, first, assess the importance of various types of features and their combinations for effective cross-domain dialogue act classification. Second, we establish the best predictive model comparing various cross-corpora training settings. Finally, we specify models adaptation procedures and explore late fusion approaches to optimize the overall classification decision taking process. The proposed methodology accounts for empirically motivated and technically sound classification procedures that may reduce annotation and training costs significantly.
%U https://aclanthology.org/L16-1017
%P 111-117
Markdown (Informal)
[Creating Annotated Dialogue Resources: Cross-domain Dialogue Act Classification](https://aclanthology.org/L16-1017) (Amanova et al., LREC 2016)
ACL