@inproceedings{schlechtweg-2016-exploitation,
title = "Exploitation of Co-reference in Distributional Semantics",
author = "Schlechtweg, Dominik",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1022",
pages = "143--149",
abstract = "The aim of distributional semantics is to model the similarity of the meaning of words via the words they occur with. Thereby, it relies on the distributional hypothesis implying that similar words have similar contexts. Deducing meaning from the distribution of words is interesting as it can be done automatically on large amounts of freely available raw text. It is because of this convenience that most current state-of-the-art-models of distributional semantics operate on raw text, although there have been successful attempts to integrate other kinds of―e.g., syntactic―information to improve distributional semantic models. In contrast, less attention has been paid to semantic information in the research community. One reason for this is that the extraction of semantic information from raw text is a complex, elaborate matter and in great parts not yet satisfyingly solved. Recently, however, there have been successful attempts to integrate a certain kind of semantic information, i.e., co-reference. Two basically different kinds of information contributed by co-reference with respect to the distribution of words will be identified. We will then focus on one of these and examine its general potential to improve distributional semantic models as well as certain more specific hypotheses.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schlechtweg-2016-exploitation">
<titleInfo>
<title>Exploitation of Co-reference in Distributional Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Schlechtweg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The aim of distributional semantics is to model the similarity of the meaning of words via the words they occur with. Thereby, it relies on the distributional hypothesis implying that similar words have similar contexts. Deducing meaning from the distribution of words is interesting as it can be done automatically on large amounts of freely available raw text. It is because of this convenience that most current state-of-the-art-models of distributional semantics operate on raw text, although there have been successful attempts to integrate other kinds of―e.g., syntactic―information to improve distributional semantic models. In contrast, less attention has been paid to semantic information in the research community. One reason for this is that the extraction of semantic information from raw text is a complex, elaborate matter and in great parts not yet satisfyingly solved. Recently, however, there have been successful attempts to integrate a certain kind of semantic information, i.e., co-reference. Two basically different kinds of information contributed by co-reference with respect to the distribution of words will be identified. We will then focus on one of these and examine its general potential to improve distributional semantic models as well as certain more specific hypotheses.</abstract>
<identifier type="citekey">schlechtweg-2016-exploitation</identifier>
<location>
<url>https://aclanthology.org/L16-1022</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>143</start>
<end>149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploitation of Co-reference in Distributional Semantics
%A Schlechtweg, Dominik
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F schlechtweg-2016-exploitation
%X The aim of distributional semantics is to model the similarity of the meaning of words via the words they occur with. Thereby, it relies on the distributional hypothesis implying that similar words have similar contexts. Deducing meaning from the distribution of words is interesting as it can be done automatically on large amounts of freely available raw text. It is because of this convenience that most current state-of-the-art-models of distributional semantics operate on raw text, although there have been successful attempts to integrate other kinds of―e.g., syntactic―information to improve distributional semantic models. In contrast, less attention has been paid to semantic information in the research community. One reason for this is that the extraction of semantic information from raw text is a complex, elaborate matter and in great parts not yet satisfyingly solved. Recently, however, there have been successful attempts to integrate a certain kind of semantic information, i.e., co-reference. Two basically different kinds of information contributed by co-reference with respect to the distribution of words will be identified. We will then focus on one of these and examine its general potential to improve distributional semantic models as well as certain more specific hypotheses.
%U https://aclanthology.org/L16-1022
%P 143-149
Markdown (Informal)
[Exploitation of Co-reference in Distributional Semantics](https://aclanthology.org/L16-1022) (Schlechtweg, LREC 2016)
ACL