@inproceedings{khalifa-etal-2016-joining,
title = "Joining-in-type Humanoid Robot Assisted Language Learning System",
author = "Khalifa, AlBara and
Kato, Tsuneo and
Yamamoto, Seiichi",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1037/",
pages = "245--249",
abstract = "Dialogue robots are attractive to people, and in language learning systems, they motivate learners and let them practice conversational skills in more realistic environment. However, automatic speech recognition (ASR) of the second language (L2) learners is still a challenge, because their speech contains not just pronouncing, lexical, grammatical errors, but is sometimes totally disordered. Hence, we propose a novel robot assisted language learning (RALL) system using two robots, one as a teacher and the other as an advanced learner. The system is designed to simulate multiparty conversation, expecting implicit learning and enhancement of predictability of learners' utterance through an alignment similar to {\textquotedblleft}interactive alignment{\textquotedblright}, which is observed in human-human conversation. We collected a database with the prototypes, and measured how much the alignment phenomenon observed in the database with initial analysis."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khalifa-etal-2016-joining">
<titleInfo>
<title>Joining-in-type Humanoid Robot Assisted Language Learning System</title>
</titleInfo>
<name type="personal">
<namePart type="given">AlBara</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsuneo</namePart>
<namePart type="family">Kato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seiichi</namePart>
<namePart type="family">Yamamoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Dialogue robots are attractive to people, and in language learning systems, they motivate learners and let them practice conversational skills in more realistic environment. However, automatic speech recognition (ASR) of the second language (L2) learners is still a challenge, because their speech contains not just pronouncing, lexical, grammatical errors, but is sometimes totally disordered. Hence, we propose a novel robot assisted language learning (RALL) system using two robots, one as a teacher and the other as an advanced learner. The system is designed to simulate multiparty conversation, expecting implicit learning and enhancement of predictability of learners’ utterance through an alignment similar to “interactive alignment”, which is observed in human-human conversation. We collected a database with the prototypes, and measured how much the alignment phenomenon observed in the database with initial analysis.</abstract>
<identifier type="citekey">khalifa-etal-2016-joining</identifier>
<location>
<url>https://aclanthology.org/L16-1037/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>245</start>
<end>249</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joining-in-type Humanoid Robot Assisted Language Learning System
%A Khalifa, AlBara
%A Kato, Tsuneo
%A Yamamoto, Seiichi
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F khalifa-etal-2016-joining
%X Dialogue robots are attractive to people, and in language learning systems, they motivate learners and let them practice conversational skills in more realistic environment. However, automatic speech recognition (ASR) of the second language (L2) learners is still a challenge, because their speech contains not just pronouncing, lexical, grammatical errors, but is sometimes totally disordered. Hence, we propose a novel robot assisted language learning (RALL) system using two robots, one as a teacher and the other as an advanced learner. The system is designed to simulate multiparty conversation, expecting implicit learning and enhancement of predictability of learners’ utterance through an alignment similar to “interactive alignment”, which is observed in human-human conversation. We collected a database with the prototypes, and measured how much the alignment phenomenon observed in the database with initial analysis.
%U https://aclanthology.org/L16-1037/
%P 245-249
Markdown (Informal)
[Joining-in-type Humanoid Robot Assisted Language Learning System](https://aclanthology.org/L16-1037/) (Khalifa et al., LREC 2016)
ACL