@inproceedings{chollet-etal-2016-multimodal,
title = "A Multimodal Corpus for the Assessment of Public Speaking Ability and Anxiety",
author = {Chollet, Mathieu and
W{\"o}rtwein, Torsten and
Morency, Louis-Philippe and
Scherer, Stefan},
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1078",
pages = "488--495",
abstract = "The ability to efficiently speak in public is an essential asset for many professions and is used in everyday life. As such, tools enabling the improvement of public speaking performance and the assessment and mitigation of anxiety related to public speaking would be very useful. Multimodal interaction technologies, such as computer vision and embodied conversational agents, have recently been investigated for the training and assessment of interpersonal skills. Once central requirement for these technologies is multimodal corpora for training machine learning models. This paper addresses the need of these technologies by presenting and sharing a multimodal corpus of public speaking presentations. These presentations were collected in an experimental study investigating the potential of interactive virtual audiences for public speaking training. This corpus includes audio-visual data and automatically extracted features, measures of public speaking anxiety and personality, annotations of participants{'} behaviors and expert ratings of behavioral aspects and overall performance of the presenters. We hope this corpus will help other research teams in developing tools for supporting public speaking training.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chollet-etal-2016-multimodal">
<titleInfo>
<title>A Multimodal Corpus for the Assessment of Public Speaking Ability and Anxiety</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mathieu</namePart>
<namePart type="family">Chollet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Torsten</namePart>
<namePart type="family">Wörtwein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Louis-Philippe</namePart>
<namePart type="family">Morency</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Scherer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The ability to efficiently speak in public is an essential asset for many professions and is used in everyday life. As such, tools enabling the improvement of public speaking performance and the assessment and mitigation of anxiety related to public speaking would be very useful. Multimodal interaction technologies, such as computer vision and embodied conversational agents, have recently been investigated for the training and assessment of interpersonal skills. Once central requirement for these technologies is multimodal corpora for training machine learning models. This paper addresses the need of these technologies by presenting and sharing a multimodal corpus of public speaking presentations. These presentations were collected in an experimental study investigating the potential of interactive virtual audiences for public speaking training. This corpus includes audio-visual data and automatically extracted features, measures of public speaking anxiety and personality, annotations of participants’ behaviors and expert ratings of behavioral aspects and overall performance of the presenters. We hope this corpus will help other research teams in developing tools for supporting public speaking training.</abstract>
<identifier type="citekey">chollet-etal-2016-multimodal</identifier>
<location>
<url>https://aclanthology.org/L16-1078</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>488</start>
<end>495</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Multimodal Corpus for the Assessment of Public Speaking Ability and Anxiety
%A Chollet, Mathieu
%A Wörtwein, Torsten
%A Morency, Louis-Philippe
%A Scherer, Stefan
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F chollet-etal-2016-multimodal
%X The ability to efficiently speak in public is an essential asset for many professions and is used in everyday life. As such, tools enabling the improvement of public speaking performance and the assessment and mitigation of anxiety related to public speaking would be very useful. Multimodal interaction technologies, such as computer vision and embodied conversational agents, have recently been investigated for the training and assessment of interpersonal skills. Once central requirement for these technologies is multimodal corpora for training machine learning models. This paper addresses the need of these technologies by presenting and sharing a multimodal corpus of public speaking presentations. These presentations were collected in an experimental study investigating the potential of interactive virtual audiences for public speaking training. This corpus includes audio-visual data and automatically extracted features, measures of public speaking anxiety and personality, annotations of participants’ behaviors and expert ratings of behavioral aspects and overall performance of the presenters. We hope this corpus will help other research teams in developing tools for supporting public speaking training.
%U https://aclanthology.org/L16-1078
%P 488-495
Markdown (Informal)
[A Multimodal Corpus for the Assessment of Public Speaking Ability and Anxiety](https://aclanthology.org/L16-1078) (Chollet et al., LREC 2016)
ACL