@inproceedings{okur-etal-2016-named,
title = "Named Entity Recognition on {T}witter for {T}urkish using Semi-supervised Learning with Word Embeddings",
author = {Okur, Eda and
Demir, Hakan and
{\"O}zg{\"u}r, Arzucan},
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1087/",
pages = "549--555",
abstract = "Recently, due to the increasing popularity of social media, the necessity for extracting information from informal text types, such as microblog texts, has gained significant attention. In this study, we focused on the Named Entity Recognition (NER) problem on informal text types for Turkish. We utilized a semi-supervised learning approach based on neural networks. We applied a fast unsupervised method for learning continuous representations of words in vector space. We made use of these obtained word embeddings, together with language independent features that are engineered to work better on informal text types, for generating a Turkish NER system on microblog texts. We evaluated our Turkish NER system on Twitter messages and achieved better F-score performances than the published results of previously proposed NER systems on Turkish tweets. Since we did not employ any language dependent features, we believe that our method can be easily adapted to microblog texts in other morphologically rich languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="okur-etal-2016-named">
<titleInfo>
<title>Named Entity Recognition on Twitter for Turkish using Semi-supervised Learning with Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eda</namePart>
<namePart type="family">Okur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hakan</namePart>
<namePart type="family">Demir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arzucan</namePart>
<namePart type="family">Özgür</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, due to the increasing popularity of social media, the necessity for extracting information from informal text types, such as microblog texts, has gained significant attention. In this study, we focused on the Named Entity Recognition (NER) problem on informal text types for Turkish. We utilized a semi-supervised learning approach based on neural networks. We applied a fast unsupervised method for learning continuous representations of words in vector space. We made use of these obtained word embeddings, together with language independent features that are engineered to work better on informal text types, for generating a Turkish NER system on microblog texts. We evaluated our Turkish NER system on Twitter messages and achieved better F-score performances than the published results of previously proposed NER systems on Turkish tweets. Since we did not employ any language dependent features, we believe that our method can be easily adapted to microblog texts in other morphologically rich languages.</abstract>
<identifier type="citekey">okur-etal-2016-named</identifier>
<location>
<url>https://aclanthology.org/L16-1087/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>549</start>
<end>555</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Named Entity Recognition on Twitter for Turkish using Semi-supervised Learning with Word Embeddings
%A Okur, Eda
%A Demir, Hakan
%A Özgür, Arzucan
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F okur-etal-2016-named
%X Recently, due to the increasing popularity of social media, the necessity for extracting information from informal text types, such as microblog texts, has gained significant attention. In this study, we focused on the Named Entity Recognition (NER) problem on informal text types for Turkish. We utilized a semi-supervised learning approach based on neural networks. We applied a fast unsupervised method for learning continuous representations of words in vector space. We made use of these obtained word embeddings, together with language independent features that are engineered to work better on informal text types, for generating a Turkish NER system on microblog texts. We evaluated our Turkish NER system on Twitter messages and achieved better F-score performances than the published results of previously proposed NER systems on Turkish tweets. Since we did not employ any language dependent features, we believe that our method can be easily adapted to microblog texts in other morphologically rich languages.
%U https://aclanthology.org/L16-1087/
%P 549-555
Markdown (Informal)
[Named Entity Recognition on Twitter for Turkish using Semi-supervised Learning with Word Embeddings](https://aclanthology.org/L16-1087/) (Okur et al., LREC 2016)
ACL