@inproceedings{chu-kurohashi-2016-paraphrasing,
title = "Paraphrasing Out-of-Vocabulary Words with Word Embeddings and Semantic Lexicons for Low Resource Statistical Machine Translation",
author = "Chu, Chenhui and
Kurohashi, Sadao",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1101/",
pages = "644--648",
abstract = "Out-of-vocabulary (OOV) word is a crucial problem in statistical machine translation (SMT) with low resources. OOV paraphrasing that augments the translation model for the OOV words by using the translation knowledge of their paraphrases has been proposed to address the OOV problem. In this paper, we propose using word embeddings and semantic lexicons for OOV paraphrasing. Experiments conducted on a low resource setting of the OLYMPICS task of IWSLT 2012 verify the effectiveness of our proposed method."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chu-kurohashi-2016-paraphrasing">
<titleInfo>
<title>Paraphrasing Out-of-Vocabulary Words with Word Embeddings and Semantic Lexicons for Low Resource Statistical Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chenhui</namePart>
<namePart type="family">Chu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Out-of-vocabulary (OOV) word is a crucial problem in statistical machine translation (SMT) with low resources. OOV paraphrasing that augments the translation model for the OOV words by using the translation knowledge of their paraphrases has been proposed to address the OOV problem. In this paper, we propose using word embeddings and semantic lexicons for OOV paraphrasing. Experiments conducted on a low resource setting of the OLYMPICS task of IWSLT 2012 verify the effectiveness of our proposed method.</abstract>
<identifier type="citekey">chu-kurohashi-2016-paraphrasing</identifier>
<location>
<url>https://aclanthology.org/L16-1101/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>644</start>
<end>648</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Paraphrasing Out-of-Vocabulary Words with Word Embeddings and Semantic Lexicons for Low Resource Statistical Machine Translation
%A Chu, Chenhui
%A Kurohashi, Sadao
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F chu-kurohashi-2016-paraphrasing
%X Out-of-vocabulary (OOV) word is a crucial problem in statistical machine translation (SMT) with low resources. OOV paraphrasing that augments the translation model for the OOV words by using the translation knowledge of their paraphrases has been proposed to address the OOV problem. In this paper, we propose using word embeddings and semantic lexicons for OOV paraphrasing. Experiments conducted on a low resource setting of the OLYMPICS task of IWSLT 2012 verify the effectiveness of our proposed method.
%U https://aclanthology.org/L16-1101/
%P 644-648
Markdown (Informal)
[Paraphrasing Out-of-Vocabulary Words with Word Embeddings and Semantic Lexicons for Low Resource Statistical Machine Translation](https://aclanthology.org/L16-1101/) (Chu & Kurohashi, LREC 2016)
ACL