@inproceedings{saint-dizier-2016-argument,
title = "Argument Mining: the Bottleneck of Knowledge and Language Resources",
author = "Saint-Dizier, Patrick",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1156/",
pages = "983--990",
abstract = "Given a controversial issue, argument mining from natural language texts (news papers, and any form of text on the Internet) is extremely challenging: domain knowledge is often required together with appropriate forms of inferences to identify arguments. This contribution explores the types of knowledge that are required and how they can be paired with reasoning schemes, language processing and language resources to accurately mine arguments. We show via corpus analysis that the Generative Lexicon, enhanced in different manners and viewed as both a lexicon and a domain knowledge representation, is a relevant approach. In this paper, corpus annotation for argument mining is first developed, then we show how the generative lexicon approach must be adapted and how it can be paired with language processing patterns to extract and specify the nature of arguments. Our approach to argument mining is thus knowledge driven."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saint-dizier-2016-argument">
<titleInfo>
<title>Argument Mining: the Bottleneck of Knowledge and Language Resources</title>
</titleInfo>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Saint-Dizier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Given a controversial issue, argument mining from natural language texts (news papers, and any form of text on the Internet) is extremely challenging: domain knowledge is often required together with appropriate forms of inferences to identify arguments. This contribution explores the types of knowledge that are required and how they can be paired with reasoning schemes, language processing and language resources to accurately mine arguments. We show via corpus analysis that the Generative Lexicon, enhanced in different manners and viewed as both a lexicon and a domain knowledge representation, is a relevant approach. In this paper, corpus annotation for argument mining is first developed, then we show how the generative lexicon approach must be adapted and how it can be paired with language processing patterns to extract and specify the nature of arguments. Our approach to argument mining is thus knowledge driven.</abstract>
<identifier type="citekey">saint-dizier-2016-argument</identifier>
<location>
<url>https://aclanthology.org/L16-1156/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>983</start>
<end>990</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Argument Mining: the Bottleneck of Knowledge and Language Resources
%A Saint-Dizier, Patrick
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F saint-dizier-2016-argument
%X Given a controversial issue, argument mining from natural language texts (news papers, and any form of text on the Internet) is extremely challenging: domain knowledge is often required together with appropriate forms of inferences to identify arguments. This contribution explores the types of knowledge that are required and how they can be paired with reasoning schemes, language processing and language resources to accurately mine arguments. We show via corpus analysis that the Generative Lexicon, enhanced in different manners and viewed as both a lexicon and a domain knowledge representation, is a relevant approach. In this paper, corpus annotation for argument mining is first developed, then we show how the generative lexicon approach must be adapted and how it can be paired with language processing patterns to extract and specify the nature of arguments. Our approach to argument mining is thus knowledge driven.
%U https://aclanthology.org/L16-1156/
%P 983-990
Markdown (Informal)
[Argument Mining: the Bottleneck of Knowledge and Language Resources](https://aclanthology.org/L16-1156/) (Saint-Dizier, LREC 2016)
ACL