@inproceedings{balahur-tanev-2016-detecting,
title = "Detecting Implicit Expressions of Affect from Text using Semantic Knowledge on Common Concept Properties",
author = "Balahur, Alexandra and
Tanev, Hristo",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1185",
pages = "1165--1170",
abstract = "Emotions are an important part of the human experience. They are responsible for the adaptation and integration in the environment, offering, most of the time together with the cognitive system, the appropriate responses to stimuli in the environment. As such, they are an important component in decision-making processes. In today{'}s society, the avalanche of stimuli present in the environment (physical or virtual) makes people more prone to respond to stronger affective stimuli (i.e., those that are related to their basic needs and motivations ― survival, food, shelter, etc.). In media reporting, this is translated in the use of arguments (factual data) that are known to trigger specific (strong, affective) behavioural reactions from the readers. This paper describes initial efforts to detect such arguments from text, based on the properties of concepts. The final system able to retrieve and label this type of data from the news in traditional and social platforms is intended to be integrated Europe Media Monitor family of applications to detect texts that trigger certain (especially negative) reactions from the public, with consequences on citizen safety and security.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="balahur-tanev-2016-detecting">
<titleInfo>
<title>Detecting Implicit Expressions of Affect from Text using Semantic Knowledge on Common Concept Properties</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hristo</namePart>
<namePart type="family">Tanev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotions are an important part of the human experience. They are responsible for the adaptation and integration in the environment, offering, most of the time together with the cognitive system, the appropriate responses to stimuli in the environment. As such, they are an important component in decision-making processes. In today’s society, the avalanche of stimuli present in the environment (physical or virtual) makes people more prone to respond to stronger affective stimuli (i.e., those that are related to their basic needs and motivations ― survival, food, shelter, etc.). In media reporting, this is translated in the use of arguments (factual data) that are known to trigger specific (strong, affective) behavioural reactions from the readers. This paper describes initial efforts to detect such arguments from text, based on the properties of concepts. The final system able to retrieve and label this type of data from the news in traditional and social platforms is intended to be integrated Europe Media Monitor family of applications to detect texts that trigger certain (especially negative) reactions from the public, with consequences on citizen safety and security.</abstract>
<identifier type="citekey">balahur-tanev-2016-detecting</identifier>
<location>
<url>https://aclanthology.org/L16-1185</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>1165</start>
<end>1170</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Implicit Expressions of Affect from Text using Semantic Knowledge on Common Concept Properties
%A Balahur, Alexandra
%A Tanev, Hristo
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F balahur-tanev-2016-detecting
%X Emotions are an important part of the human experience. They are responsible for the adaptation and integration in the environment, offering, most of the time together with the cognitive system, the appropriate responses to stimuli in the environment. As such, they are an important component in decision-making processes. In today’s society, the avalanche of stimuli present in the environment (physical or virtual) makes people more prone to respond to stronger affective stimuli (i.e., those that are related to their basic needs and motivations ― survival, food, shelter, etc.). In media reporting, this is translated in the use of arguments (factual data) that are known to trigger specific (strong, affective) behavioural reactions from the readers. This paper describes initial efforts to detect such arguments from text, based on the properties of concepts. The final system able to retrieve and label this type of data from the news in traditional and social platforms is intended to be integrated Europe Media Monitor family of applications to detect texts that trigger certain (especially negative) reactions from the public, with consequences on citizen safety and security.
%U https://aclanthology.org/L16-1185
%P 1165-1170
Markdown (Informal)
[Detecting Implicit Expressions of Affect from Text using Semantic Knowledge on Common Concept Properties](https://aclanthology.org/L16-1185) (Balahur & Tanev, LREC 2016)
ACL