@inproceedings{ryzhova-etal-2016-typology,
title = "Typology of Adjectives Benchmark for Compositional Distributional Models",
author = "Ryzhova, Daria and
Kyuseva, Maria and
Paperno, Denis",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1199",
pages = "1253--1257",
abstract = "In this paper we present a novel application of compositional distributional semantic models (CDSMs): prediction of lexical typology. The paper introduces the notion of typological closeness, which is a novel rigorous formalization of semantic similarity based on comparison of multilingual data. Starting from the Moscow Database of Qualitative Features for adjective typology, we create four datasets of typological closeness, on which we test a range of distributional semantic models. We show that, on the one hand, vector representations of phrases based on data from one language can be used to predict how words within the phrase translate into different languages, and, on the other hand, that typological data can serve as a semantic benchmark for distributional models. We find that compositional distributional models, especially parametric ones, perform way above non-compositional alternatives on the task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ryzhova-etal-2016-typology">
<titleInfo>
<title>Typology of Adjectives Benchmark for Compositional Distributional Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daria</namePart>
<namePart type="family">Ryzhova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kyuseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Paperno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present a novel application of compositional distributional semantic models (CDSMs): prediction of lexical typology. The paper introduces the notion of typological closeness, which is a novel rigorous formalization of semantic similarity based on comparison of multilingual data. Starting from the Moscow Database of Qualitative Features for adjective typology, we create four datasets of typological closeness, on which we test a range of distributional semantic models. We show that, on the one hand, vector representations of phrases based on data from one language can be used to predict how words within the phrase translate into different languages, and, on the other hand, that typological data can serve as a semantic benchmark for distributional models. We find that compositional distributional models, especially parametric ones, perform way above non-compositional alternatives on the task.</abstract>
<identifier type="citekey">ryzhova-etal-2016-typology</identifier>
<location>
<url>https://aclanthology.org/L16-1199</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>1253</start>
<end>1257</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Typology of Adjectives Benchmark for Compositional Distributional Models
%A Ryzhova, Daria
%A Kyuseva, Maria
%A Paperno, Denis
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F ryzhova-etal-2016-typology
%X In this paper we present a novel application of compositional distributional semantic models (CDSMs): prediction of lexical typology. The paper introduces the notion of typological closeness, which is a novel rigorous formalization of semantic similarity based on comparison of multilingual data. Starting from the Moscow Database of Qualitative Features for adjective typology, we create four datasets of typological closeness, on which we test a range of distributional semantic models. We show that, on the one hand, vector representations of phrases based on data from one language can be used to predict how words within the phrase translate into different languages, and, on the other hand, that typological data can serve as a semantic benchmark for distributional models. We find that compositional distributional models, especially parametric ones, perform way above non-compositional alternatives on the task.
%U https://aclanthology.org/L16-1199
%P 1253-1257
Markdown (Informal)
[Typology of Adjectives Benchmark for Compositional Distributional Models](https://aclanthology.org/L16-1199) (Ryzhova et al., LREC 2016)
ACL