@inproceedings{ecker-etal-2016-unsupervised,
title = "Unsupervised Ranked Cross-Lingual Lexical Substitution for Low-Resource Languages",
author = "Ecker, Stefan and
Horbach, Andrea and
Thater, Stefan",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1270",
pages = "1709--1717",
abstract = "We propose an unsupervised system for a variant of cross-lingual lexical substitution (CLLS) to be used in a reading scenario in computer-assisted language learning (CALL), in which single-word translations provided by a dictionary are ranked according to their appropriateness in context. In contrast to most alternative systems, ours does not rely on either parallel corpora or machine translation systems, making it suitable for low-resource languages as the language to be learned. This is achieved by a graph-based scoring mechanism which can deal with ambiguous translations of context words provided by a dictionary. Due to this decoupling from the source language, we need monolingual corpus resources only for the target language, i.e. the language of the translation candidates. We evaluate our approach for the language pair Norwegian Nynorsk-English on an exploratory manually annotated gold standard and report promising results. When running our system on the original SemEval CLLS task, we rank 6th out of 18 (including 2 baselines and our 2 system variants) in the best evaluation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ecker-etal-2016-unsupervised">
<titleInfo>
<title>Unsupervised Ranked Cross-Lingual Lexical Substitution for Low-Resource Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ecker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Horbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Thater</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an unsupervised system for a variant of cross-lingual lexical substitution (CLLS) to be used in a reading scenario in computer-assisted language learning (CALL), in which single-word translations provided by a dictionary are ranked according to their appropriateness in context. In contrast to most alternative systems, ours does not rely on either parallel corpora or machine translation systems, making it suitable for low-resource languages as the language to be learned. This is achieved by a graph-based scoring mechanism which can deal with ambiguous translations of context words provided by a dictionary. Due to this decoupling from the source language, we need monolingual corpus resources only for the target language, i.e. the language of the translation candidates. We evaluate our approach for the language pair Norwegian Nynorsk-English on an exploratory manually annotated gold standard and report promising results. When running our system on the original SemEval CLLS task, we rank 6th out of 18 (including 2 baselines and our 2 system variants) in the best evaluation.</abstract>
<identifier type="citekey">ecker-etal-2016-unsupervised</identifier>
<location>
<url>https://aclanthology.org/L16-1270</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>1709</start>
<end>1717</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Ranked Cross-Lingual Lexical Substitution for Low-Resource Languages
%A Ecker, Stefan
%A Horbach, Andrea
%A Thater, Stefan
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F ecker-etal-2016-unsupervised
%X We propose an unsupervised system for a variant of cross-lingual lexical substitution (CLLS) to be used in a reading scenario in computer-assisted language learning (CALL), in which single-word translations provided by a dictionary are ranked according to their appropriateness in context. In contrast to most alternative systems, ours does not rely on either parallel corpora or machine translation systems, making it suitable for low-resource languages as the language to be learned. This is achieved by a graph-based scoring mechanism which can deal with ambiguous translations of context words provided by a dictionary. Due to this decoupling from the source language, we need monolingual corpus resources only for the target language, i.e. the language of the translation candidates. We evaluate our approach for the language pair Norwegian Nynorsk-English on an exploratory manually annotated gold standard and report promising results. When running our system on the original SemEval CLLS task, we rank 6th out of 18 (including 2 baselines and our 2 system variants) in the best evaluation.
%U https://aclanthology.org/L16-1270
%P 1709-1717
Markdown (Informal)
[Unsupervised Ranked Cross-Lingual Lexical Substitution for Low-Resource Languages](https://aclanthology.org/L16-1270) (Ecker et al., LREC 2016)
ACL