@inproceedings{burga-etal-2016-towards,
title = "Towards Multiple Antecedent Coreference Resolution in Specialized Discourse",
author = "Burga, Alicia and
Cajal, Sergio and
Codina-Filb{\`a}, Joan and
Wanner, Leo",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1325/",
pages = "2052--2057",
abstract = "Despite the popularity of coreference resolution as a research topic, the overwhelming majority of the work in this area focused so far on single antecedence coreference only. Multiple antecedent coreference (MAC) has been largely neglected. This can be explained by the scarcity of the phenomenon of MAC in generic discourse. However, in specialized discourse such as patents, MAC is very dominant. It seems thus unavoidable to address the problem of MAC resolution in the context of tasks related to automatic patent material processing, among them abstractive summarization, deep parsing of patents, construction of concept maps of the inventions, etc. We present the first version of an operational rule-based MAC resolution strategy for patent material that covers the three major types of MAC: (i) nominal MAC, (ii) MAC with personal / relative pronouns, and MAC with reflexive / reciprocal pronouns. The evaluation shows that our strategy performs well in terms of precision and recall."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="burga-etal-2016-towards">
<titleInfo>
<title>Towards Multiple Antecedent Coreference Resolution in Specialized Discourse</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alicia</namePart>
<namePart type="family">Burga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergio</namePart>
<namePart type="family">Cajal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joan</namePart>
<namePart type="family">Codina-Filbà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Despite the popularity of coreference resolution as a research topic, the overwhelming majority of the work in this area focused so far on single antecedence coreference only. Multiple antecedent coreference (MAC) has been largely neglected. This can be explained by the scarcity of the phenomenon of MAC in generic discourse. However, in specialized discourse such as patents, MAC is very dominant. It seems thus unavoidable to address the problem of MAC resolution in the context of tasks related to automatic patent material processing, among them abstractive summarization, deep parsing of patents, construction of concept maps of the inventions, etc. We present the first version of an operational rule-based MAC resolution strategy for patent material that covers the three major types of MAC: (i) nominal MAC, (ii) MAC with personal / relative pronouns, and MAC with reflexive / reciprocal pronouns. The evaluation shows that our strategy performs well in terms of precision and recall.</abstract>
<identifier type="citekey">burga-etal-2016-towards</identifier>
<location>
<url>https://aclanthology.org/L16-1325/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>2052</start>
<end>2057</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Multiple Antecedent Coreference Resolution in Specialized Discourse
%A Burga, Alicia
%A Cajal, Sergio
%A Codina-Filbà, Joan
%A Wanner, Leo
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F burga-etal-2016-towards
%X Despite the popularity of coreference resolution as a research topic, the overwhelming majority of the work in this area focused so far on single antecedence coreference only. Multiple antecedent coreference (MAC) has been largely neglected. This can be explained by the scarcity of the phenomenon of MAC in generic discourse. However, in specialized discourse such as patents, MAC is very dominant. It seems thus unavoidable to address the problem of MAC resolution in the context of tasks related to automatic patent material processing, among them abstractive summarization, deep parsing of patents, construction of concept maps of the inventions, etc. We present the first version of an operational rule-based MAC resolution strategy for patent material that covers the three major types of MAC: (i) nominal MAC, (ii) MAC with personal / relative pronouns, and MAC with reflexive / reciprocal pronouns. The evaluation shows that our strategy performs well in terms of precision and recall.
%U https://aclanthology.org/L16-1325/
%P 2052-2057
Markdown (Informal)
[Towards Multiple Antecedent Coreference Resolution in Specialized Discourse](https://aclanthology.org/L16-1325/) (Burga et al., LREC 2016)
ACL