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Abstract
This paper presents a semi-automatic method to derive morphological analyzers from a limited number of example inflections suitable for
languages with alphabetic writing systems. The system we present learns the inflectional behavior of morphological paradigms from
examples and converts the learned paradigms into a finite-state transducer that is able to map inflected forms of previously unseen words
into lemmas and corresponding morphosyntactic descriptions. We evaluate the system when provided with inflection tables for several
languages collected from the Wiktionary.
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1. Introduction
Morphological analysis tools that provide detailed mor-

phosyntactic descriptions (MSDs) and lemmatization of ar-
bitrary word forms in some language are widely held to
be fundamental for good performance of many higher-level
NLP applications (Tseng et al., 2005; Spoustová et al., 2007;
Avramidis and Koehn, 2008; Zeman, 2008; Hulden and
Francom, 2012), particularly for languages with rich inflec-
tional and derivational morphology. Hand-built systems,
often modeled as finite-state transducers, offer very reliable
morphological parses, but are time-consuming to create,
and require significant linguistic expertise from the devel-
opers (Maxwell, 2015). In many cases, however, finding
collated example inflections on a large scale for some lan-
guage through resources such as the Wiktionary or simply
by consulting a speaker of the language is far less laborious
than the elaborate linguistic modeling required to produce a
robust morphological analyzer.

In this paper we address this by describing a tool for
automatic generation of finite-state morphological analyzers
from collections of example word forms together with their
MSDs. These morphological analyzers are constructed in
the classical finite-state paradigm (Beesley and Karttunen,
2003), are non-probabilistic, and are designed to be high-
recall, and hence to return all linguistically plausible anal-
yses and lemmas, much like a hand-built morphological
analyzer would which is extended with a ‘guesser’ module.

Our tool takes as input a set of words annotated with
lemma and MSD, grouped into inflection tables, and pro-
duces as output a morphological analyzer using the Xerox
regular expression formalism (Karttunen et al., 1996), which
we compile into a transducer with the open-source finite-
state toolkit foma (Hulden, 2009).1

2. Background
In this paper, we work with the idea that inflections and

derivations of related word forms can be formally expressed
as functions. Such a view has been commonly seen as an
alternative to the finite-state morphology approach where

1Our code is freely available together with the training/test
setup employed in this paper at github.com/marfors/
paradigmextract
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Figure 1: Illustration of generalizing inflection tables into
abstract paradigms: (a) a number of inflection tables are
given; (b) the aligned longest common subsequence is ex-
tracted; (c) resulting identical paradigms are merged. If the
resulting paradigm is interpreted as a function, f1(shr, nk)
produces shrink, shrank, shrunk.

functions that model inflectional behavior are built by hand
(Forsberg and Ranta, 2004; Forsberg et al., 2006; Détrez and
Ranta, 2012). As a starting point to the current work, we
assume the approach of Ahlberg et al. (2014) and Ahlberg
et al. (2015), which provide a mechanism to learn a specific
type of function automatically from labeled data given to
the algorithm in the form of inflected word forms grouped
into inflection tables. In that work, different inflections and
derived forms of a lemma are generalized into so-called
‘abstract paradigms’.

These paradigm functions essentially generalize con-
crete manifestations of word inflections for specific lemmas,
allowing those inflections to be carried out for previously
unseen words. This generalization is done by extracting the
Longest Common Subsequence (LCS) for all related word
forms and then declaring that the graphemes or phonemes
that participate in the LCS are variables of the resulting
function (Hulden, 2014). The new representation can be
interpreted as a function which generates specific new in-
flection tables, given a specific set of variable values. We
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refer the reader to Figure 1, which illustrates this process
where paradigm functions are built from the extracted LCS
from a number of inflected forms.

In general, the algorithm often produces much fewer
unique functions compared with the number of inflection
tables given as input. One of the advantages of the model is
that it produces a human-readable structured output which
can be inspected and also used as a starting point for other
learning procedures, such as the production of finite-state
morphological analyzers, which we describe below.

2.1. Variables in paradigms
The variables that participate in an abstract paradigm

in essence capture all possible paradigmatic variation where
substituting one set of variables in a paradigm function for
another set of variables generates the inflectional pattern
for a different word. For example, the paradigm function
induced from avenir in Table 1 implicitly states that the
original variables of the paradigm function were x1 = av
and x2 = n. Substituting x1 with e.g. conv yields another
specific inflection table, the one for convenir. That is f(conv,
n) maps to the inflection table:conviniendo, convenido, etc.
Even though these variables can in principle be instantiated
with arbitrary strings, morphophonological restrictions on
their shape will inevitably come into play as variable parts
alternate with fixed parts in the abstract paradigm. As we
collect more data which are generalized into paradigms
we also acquire more evidence about the nature of these
restrictions. For example, Figure 2 shows some different x1

and x2 which have been seen as several concrete inflection
patterns were all coalesced into one abstract paradigm.

3. Constraining variables
As we collect and generalize inflection tables we can ex-

amine the different instantiations of the variables x1, . . . , xn.
Not unsurprisingly, the content of these variables will not dif-
fer arbitrarily within a paradigm. Rather, most variables are
constrained in that they reflect morphophonological phenom-
ena and orthographic conventions. After collecting multiple
inflection tables that yield many identical paradigms, we
can reexamine the variables in a paradigm to produce more
constrained definitions of the paradigms in question.

This can be illustrated through Figure 2, which shows
the implicit mechanism by which to derive the lemma (the in-
finitive form) from the present participle and the first person
singular present forms in two different learned paradigms
in Spanish. Both paradigms contain two variables x1 and
x2. In the first paradigm, called avenir we can see that x1

always ends in the letter v, and that x2 is always the string
n.2 In the second paradigm (negar), there is no clear pattern
regarding the shape of x1. However, x2 in all 14 inflection
tables that produced the paradigm, is always the string eg.

3.1. Estimating probabilities of new variable
instantiations

This observation—that the variable parts of paradigms
do not change arbitrarily—allows for the establishment of

2The name of the paradigm is arbitrarily chosen among all the
verbs that belong to it.
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Figure 2: Abstract paradigms implicitly provide a mapping
from any inflected form to any other form, a lemma for
example. In the example we see two Spanish verbs from dif-
ferent paradigms together with a rule for mapping from the
participle to the infinitive (left) and the first person singular
present form to the infinitive (right). The different variable
instantiations x1 and x2 seen in the training data are also
shown.

constraints on their graphemic shape. As is seen intuitively
from the contents of Figure 2, the x2 variables seem to
be entirely determined, while the avenir paradigm’s x1 is
subject to variation except for the final letter, which is always
v.

We can formalize a simple probability measure which
effectively quantifies our belief in seeing novel instantia-
tions of a variable in the future, apart from those already
witnessed. We do so as follows: first, we assume, having
witnessed t types of instantiations for a variable xi, that
there are in fact t+ 1 types, and that we have simply not yet
seen the evidence for the t + 1th type. We also assume that
all types are drawn from a uniform distribution. Under these
assumptions, the likelihood of witnessing the data where the
class is not closed, but a t + 1th member never happened to
be witnessed, becomes

punseen = (1− 1

t + 1
)n (1)

where n is the number of tokens witnessed for the variable.
For example, the probability of the x2 variable in avenir in
Figure 2 becomes (1 − 1/2)12 ≈ 0.0002.3 This provides
us with a parameter that can be used to refine how much
evidence we require to declare the class of values that the
variable can assume closed. We shall henceforth, unless
otherwise stated, assume that if punseen ≤ 0.05, the class is
closed.

3The question of estimating the probability of a previously
unseen type is addressed in multiple ways in the literature, the most-
well known of which is the popular Good-Turing estimator (Good,
1953). Other less known, specifically linguistics discussions on the
matter include Ogino (1999) and Kageura and Sekine (1999).
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Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: An illustration of generalizing two (partial) Spanish verb inflection tables into paradigms. The segments that are part
of the longest common subsequence, which are cast as variables in the generalization, is shown in boldface in the inflection
tables.

3.2. Expressing constraints through regular
expressions

The above measure allows to constrain those variables
where the entire variable assumes a limited number of
strings, as in x2, which is always n in the paradigm for
avenir Table 2. However, x1, for example, in the same
paradigm appears to not be a closed class in this sense, but
does appear to have limited variability in its last letter. To
model this intuition, we can use the same scoring method
as above, and extend it to investigate the seen prefixes and
suffixes of all lengths for some variable xi. We do as fol-
lows. First we examine all strings seen as instantiations of
xi. If punseen ≤ 0.05, we declare the class closed. If the
class cannot be assumed to be closed, we find the longest
prefix and suffix which can be assumed to be closed by the
same measure. After doing this, we can construct a regu-
lar expression that models the possible variation seen for a
variable, which is:

1. (w1 ∪ w2 ∪ . . . ∪ wn) if the class is closed, where the
wis are the complete strings seen as instantiations.

2. (p1∪. . .∪pn)Σ∗∩Σ∗(s1∪. . .∪sn), if both prefixes and
suffixes can be constrained; here the pis correspond to
the prefixes of the maximal length that can be assumed
to be drawn from a closed class, and the sis the suffixes.

3. (p1 ∪ . . . ∪ pn)Σ∗ if only prefixes can be constrained.

4. Σ∗(s1 ∪ . . . ∪ sn) if only suffixes can be constrained.

5. Σ+ otherwise.

Here, we have collected all the symbols seen in all
paradigms into the alphabet, Σ. For example, variables in
the avenir paradigm in Figure 2 generalize to the following
regular expressions:

x1 = (Σ∗v) x2 = n (2)

i.e. x1 must end in v and x2 must always be the single letter
n.4

These constraints allow us to capture many linguistic
generalizations within a paradigm, and also to directly con-
struct finite-state transducers that map word forms to their
analyses in a constrained way.

4Our tool also provides different export formats for these gen-
eralizations, including Python-compatible regular expressions, and
foma-compatible ones.

4. Deriving morphological analyzers
The above generalization of related word forms into

paradigms and the subsequent restriction of the variable
parts of each paradigm allows to directly construct individ-
ual transducers that perform the specific mapping of word
form to its lemma and MSD. To achieve this, we construct
a regular expression for each form in a paradigm that al-
ternately repeats the variable parts in a paradigm form and
maps the other parts to their corresponding lemma form.

For example, to map the aviniendo form (in Table 1)
to its lemma form avenir, we note that we have generalized
aviniendo as x1 + i + x2 + iendo, while the lemma form is
generalized as x1 + e + x2 + ir. Taking into account the fact
that we have witnessed many different words that follow the
same pattern, and so further constrained x1 to the regular
expression (Σ∗ v) and x2 to the regular expression n, we
can construct a regular expression for this entire mapping:

(Σ∗ v) (i :e) n (iendo : ir[type=participle]) (3)

The resulting single transducer of this is shown in Fig-
ure 3 (top).

Each word form of each paradigm is thus converted into
a single transducer that analyzes a single type of inflection.
All these transducers can be combined into one monolithic
transducer by simply calculating a union of them all:

f1 ∪ f2 ∪ . . . ∪ f1 ∪ . . . ∪ fm (4)

5. Prioritizing analyses
The above directly allows us to construct a morphologi-

cal analyzer that is both guaranteed to handle all inflections
provided as training data and also generalizes this to unseen
word forms in a constrained way through inferring mor-
phophonological restrictions on the variables in a paradigm.
However, for practical use, such an analyzer may return
multiple analyses for any word form given to it if some
paradigms are sufficiently unconstrained. This is often un-
desirable for analyzing those word forms already seen in the
training data (since we know what paradigm they belong to).
Additionally, it may also be the case that we have overcon-
strained some variable and would thus be missing analyses
for some unseen word forms.

To address both these issues, we generate three separate
analyzers as follows:
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Figure 3: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic description. The
parts that correspond to constraints of the variables x1 and x2 are marked. Transitions marked @ are identity transduction
‘elsewhere’ cases, matching any symbol not explicitly mentioned in the state.

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Illustration of the behavior of the three sub-
grammars learned on two Spanish words; Original = O,
Constrained = C, Unconstrained = U. The first word to be
parsed, peleaste ‘quarrel’, is seen in the training data and
hence gets a parse from O, while the second word aceleran
‘accelerate’ is not, and only gets parses from C and U with
increasing tolerance of variable instantiation.

• Original: this is an analyzer where no variables are
generalized; any xi must be exactly one of those seen
in the training data.

• Constrained: this is an analyzer where variables are
constrained as described above in section 3.

• Unconstrained: this is an analyzer where all variables
are completely unconstrained, i.e. match the regular
expression Σ+.

These analyzers can be combined into one large trans-
ducer by, e.g., an operation commonly called priority union
(Kaplan, 1987):

Original ∪P Constrained ∪P Unconstrained (5)

This in effect leads to an analyzer that can be thought
of as first consulting Original, and that failing to produce
an analysis, consults Constrained, and if that also fails,
consults Unconstrained.5 This results in a tri-level analy-
sis where the most robust analyses have priority over those
which can be produced by more lax generalization. Table
2 shows the parses given with two Spanish words using the
differently constrained transducers when trained on Wik-
tionary training data to illustrate the increasing number of
accepted parses with decreasing constraints.

6. Evaluation
To evaluate the system we used the data set published by

Durrett and DeNero (2013) (D&DN13). This includes fully
inflected forms for thousands of lemmas in three languages:
German (nouns and verbs), Spanish (verbs), and Finnish
(nouns+adjectives and verbs). These forms are organized
into inflection tables. We used the same train/test splits as
in the source, and set aside all the word forms from 200
inflection tables for testing. The task then consisted of
providing analyses for each unseen form. We test on each
part-of-speech separately, and also provide an evaluation on
a combined test set where the part-of-speech is not known.
The evaluation setup is the one described above where we
have a three-part priority system—and a union of these
systems in the combined test case—that returns preferably
only the most constrained analyses first, and resorting to
the more lax variant if the more constrained system fails to
produce output. Since the sets of tables of train+dev and test
are disjoint, the contribution of Original is ranging from
modest to non-existent.

We ran our tool on the word forms and corresponding
MSDs in the training data and generated a finite-state trans-
ducer as described previously. We then used the transducers

5The analyzers can of course be stored as separate transducers
without combining them, and the ‘priority union’ strategy simu-
lated at run-time.
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Language L-recall L+M-recall L/W L+M/W

German nouns 95.30% 95.06% 2.08 9.52
verbs 91.18% 92.44% 4.16 9.57
nouns+verbs 92.11% 93.04% 4.91 14.10

Spanish verbs 98.06% 97.98% 1.93 2.20

Finnish nounadj 88.69% 88.48% 4.10 5.30
verbs 94.52% 94.47% 3.77 4.60
nounadj+verbs 92.63% 92.43% 12.56 16.40

Table 3: The result of the evaluation, where we report separately on the recall of just the lemma (L-recall), and the recall of
the lemma and corresponding MSD (L+M-recall). Also shown are the average number of unique lemmas returned per word
form to be analyzed (L/W), and the average number of lemmas and MSDs returned (L+M/W).

Language Tables Paradigms

German nouns 2564 70
verbs 1827 139
nouns+verbs 4391 209

Spanish verbs 3855 96

Finnish nounadj 6200 259
verbs 7049 276
nounadj+verbs 13249 535

Table 4: The D&DN13 train+dev set. Paradigms is the
corresponding number of induced abstract paradigms.

Language Tables Unique word forms Ambiguity

German nouns 200 553 2.89
verbs 200 2324 2.32
nouns+verbs 400 2877 2.43

Spanish verbs 200 10003 1.14

Finnish nounadj 200 5198 1.08
verbs 200 10466 1.03
nounadj+verbs 400 15664 1.05

Table 5: The D&DN13 test set. Ambiguity is the average
number of lemma-MSD pairs per unique word form.

to map unseen word forms in the test data to analyses. Table
4 shows the number of inflection tables used as training data,
together with the number of resulting unique paradigms (or
paradigm functions) the longest-common-subsequence ex-
traction produces. Table 5 shows the number of tables and
unique word forms in the test set. Also, we provide an in-
herent ‘ambiguity’ measure of the test data which shows the
average number of different morphosyntactic descriptions
that correspond to one word form in the test data (e.g. a
Spanish verb tenga is inherently ambiguous as it can either
be the first person singular present subjunctive of tener ‘to
have’ or the third person singular present subjunctive). Be-
cause of this significant inherent ambiguity, we focus on
the recall of the system, rather than precision, reporting the
ambiguity separately.6

6An ideal evaluation metric would be to mimic the task where
a human is asked to enumerate all plausible lemmas and their
MSDs for an unseen/previously unknown word, where only the
truly impossible interpretations should be ruled out. In such a
way, one could provide both precision and recall figures for the

6.1. Results
Table 3 shows the main results of the evaluation.
In some cases, L-recall is lower than the corresponding

L+M-recall, which might seem counter-intuitive at first. To
understand why this could happen, consider these two cases:
w1 → {l1 : msd1, l1 : msd2} and w2 → {l2 : msd3}.
If we get w1 completely right and w2 completely wrong,
that would give us an L-recall of 50% and an L+M-recall of
66.6%.

It might be tempting to estimate precision by comparing
Ambiguity with L+M/W, but this should be done with care.
Even if we disregard the requirement that only impossible
analyses should be ruled out in this evaluation, the test data
does not give us a complete picture; to illustrate this with
an English example, it might be the case that call (noun) is
in the test set, but not call (verb), which would give us an
Ambiguity score of 1 but a (strict) L+M/W score of 4, i.e., a
conclusion that the precision is 25% would be incorrect.

7. Conclusion and future work
The tool we have described allows for a supervised

method to produce morphological analyzers and guessers
in the finite-state paradigm from labeled word forms. The
method offers an avenue to quickly produce high-recall
morphological analysis from limited amounts of labeled
data with no linguistic development necessary.

The tool can be used as is or for semi-supervised lex-
icon expansion if access to raw text corpora is available.
Some immediate further extensions appear useful. For ex-
ample, weighted finite-state transducers could be used to
impose language models—also learned from the data—for
the variable parts in a paradigm instead of the constraint
method used here. Such a tool could automatically rank the
different lemma/MSD candidates that the system currently
provides as analyses and could also combine seamlessly
with higher-level statistical analyses such as part-of-speech
tagging and syntactic parsing.

task. Unfortunately, no such data set exists and it seems one
would be rather challenging to produce because of the difficulty
of exhaustively enumerating all morphophonologically plausible
analyses and lemmatizations.
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