@inproceedings{adouane-johansson-2016-gulf,
title = "{G}ulf {A}rabic Linguistic Resource Building for Sentiment Analysis",
author = "Adouane, Wafia and
Johansson, Richard",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1430/",
pages = "2710--2715",
abstract = "This paper deals with building linguistic resources for Gulf Arabic, one of the Arabic variations, for sentiment analysis task using machine learning. To our knowledge, no previous works were done for Gulf Arabic sentiment analysis despite the fact that it is present in different online platforms. Hence, the first challenge is the absence of annotated data and sentiment lexicons. To fill this gap, we created these two main linguistic resources. Then we conducted different experiments: use Naive Bayes classifier without any lexicon; add a sentiment lexicon designed basically for MSA; use only the compiled Gulf Arabic sentiment lexicon and finally use both MSA and Gulf Arabic sentiment lexicons. The Gulf Arabic lexicon gives a good improvement of the classifier accuracy (90.54 {\%}) over a baseline that does not use the lexicon (82.81{\%}), while the MSA lexicon causes the accuracy to drop to (76.83{\%}). Moreover, mixing MSA and Gulf Arabic lexicons causes the accuracy to drop to (84.94{\%}) compared to using only Gulf Arabic lexicon. This indicates that it is useless to use MSA resources to deal with Gulf Arabic due to the considerable differences and conflicting structures between these two languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="adouane-johansson-2016-gulf">
<titleInfo>
<title>Gulf Arabic Linguistic Resource Building for Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wafia</namePart>
<namePart type="family">Adouane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Johansson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper deals with building linguistic resources for Gulf Arabic, one of the Arabic variations, for sentiment analysis task using machine learning. To our knowledge, no previous works were done for Gulf Arabic sentiment analysis despite the fact that it is present in different online platforms. Hence, the first challenge is the absence of annotated data and sentiment lexicons. To fill this gap, we created these two main linguistic resources. Then we conducted different experiments: use Naive Bayes classifier without any lexicon; add a sentiment lexicon designed basically for MSA; use only the compiled Gulf Arabic sentiment lexicon and finally use both MSA and Gulf Arabic sentiment lexicons. The Gulf Arabic lexicon gives a good improvement of the classifier accuracy (90.54 %) over a baseline that does not use the lexicon (82.81%), while the MSA lexicon causes the accuracy to drop to (76.83%). Moreover, mixing MSA and Gulf Arabic lexicons causes the accuracy to drop to (84.94%) compared to using only Gulf Arabic lexicon. This indicates that it is useless to use MSA resources to deal with Gulf Arabic due to the considerable differences and conflicting structures between these two languages.</abstract>
<identifier type="citekey">adouane-johansson-2016-gulf</identifier>
<location>
<url>https://aclanthology.org/L16-1430/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>2710</start>
<end>2715</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Gulf Arabic Linguistic Resource Building for Sentiment Analysis
%A Adouane, Wafia
%A Johansson, Richard
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F adouane-johansson-2016-gulf
%X This paper deals with building linguistic resources for Gulf Arabic, one of the Arabic variations, for sentiment analysis task using machine learning. To our knowledge, no previous works were done for Gulf Arabic sentiment analysis despite the fact that it is present in different online platforms. Hence, the first challenge is the absence of annotated data and sentiment lexicons. To fill this gap, we created these two main linguistic resources. Then we conducted different experiments: use Naive Bayes classifier without any lexicon; add a sentiment lexicon designed basically for MSA; use only the compiled Gulf Arabic sentiment lexicon and finally use both MSA and Gulf Arabic sentiment lexicons. The Gulf Arabic lexicon gives a good improvement of the classifier accuracy (90.54 %) over a baseline that does not use the lexicon (82.81%), while the MSA lexicon causes the accuracy to drop to (76.83%). Moreover, mixing MSA and Gulf Arabic lexicons causes the accuracy to drop to (84.94%) compared to using only Gulf Arabic lexicon. This indicates that it is useless to use MSA resources to deal with Gulf Arabic due to the considerable differences and conflicting structures between these two languages.
%U https://aclanthology.org/L16-1430/
%P 2710-2715
Markdown (Informal)
[Gulf Arabic Linguistic Resource Building for Sentiment Analysis](https://aclanthology.org/L16-1430/) (Adouane & Johansson, LREC 2016)
ACL