@inproceedings{de-clercq-hoste-2016-rude,
title = "Rude waiter but mouthwatering pastries! An exploratory study into {D}utch Aspect-Based Sentiment Analysis",
author = "De Clercq, Orph{\'e}e and
Hoste, V{\'e}ronique",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1465/",
pages = "2910--2917",
abstract = "The fine-grained task of automatically detecting all sentiment expressions within a given document and the aspects to which they refer is known as aspect-based sentiment analysis. In this paper we present the first full aspect-based sentiment analysis pipeline for Dutch and apply it to customer reviews. To this purpose, we collected reviews from two different domains, i.e. restaurant and smartphone reviews. Both corpora have been manually annotated using newly developed guidelines that comply to standard practices in the field. For our experimental pipeline we perceive aspect-based sentiment analysis as a task consisting of three main subtasks which have to be tackled incrementally: aspect term extraction, aspect category classification and polarity classification. First experiments on our Dutch restaurant corpus reveal that this is indeed a feasible approach that yields promising results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="de-clercq-hoste-2016-rude">
<titleInfo>
<title>Rude waiter but mouthwatering pastries! An exploratory study into Dutch Aspect-Based Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Orphée</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Véronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The fine-grained task of automatically detecting all sentiment expressions within a given document and the aspects to which they refer is known as aspect-based sentiment analysis. In this paper we present the first full aspect-based sentiment analysis pipeline for Dutch and apply it to customer reviews. To this purpose, we collected reviews from two different domains, i.e. restaurant and smartphone reviews. Both corpora have been manually annotated using newly developed guidelines that comply to standard practices in the field. For our experimental pipeline we perceive aspect-based sentiment analysis as a task consisting of three main subtasks which have to be tackled incrementally: aspect term extraction, aspect category classification and polarity classification. First experiments on our Dutch restaurant corpus reveal that this is indeed a feasible approach that yields promising results.</abstract>
<identifier type="citekey">de-clercq-hoste-2016-rude</identifier>
<location>
<url>https://aclanthology.org/L16-1465/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>2910</start>
<end>2917</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rude waiter but mouthwatering pastries! An exploratory study into Dutch Aspect-Based Sentiment Analysis
%A De Clercq, Orphée
%A Hoste, Véronique
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F de-clercq-hoste-2016-rude
%X The fine-grained task of automatically detecting all sentiment expressions within a given document and the aspects to which they refer is known as aspect-based sentiment analysis. In this paper we present the first full aspect-based sentiment analysis pipeline for Dutch and apply it to customer reviews. To this purpose, we collected reviews from two different domains, i.e. restaurant and smartphone reviews. Both corpora have been manually annotated using newly developed guidelines that comply to standard practices in the field. For our experimental pipeline we perceive aspect-based sentiment analysis as a task consisting of three main subtasks which have to be tackled incrementally: aspect term extraction, aspect category classification and polarity classification. First experiments on our Dutch restaurant corpus reveal that this is indeed a feasible approach that yields promising results.
%U https://aclanthology.org/L16-1465/
%P 2910-2917
Markdown (Informal)
[Rude waiter but mouthwatering pastries! An exploratory study into Dutch Aspect-Based Sentiment Analysis](https://aclanthology.org/L16-1465/) (De Clercq & Hoste, LREC 2016)
ACL